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On the conformal field theory of the two-dimensional Ising 
model 

W Maderner 
lnstitut fur Theoretirhe Physik, Universitat Wien, Bolmanngasse 5, A-1090 Wien, 
Austria 

Received 13 November 1591 

AhstracL An explicit mnstmction of a free and masseless Majorana quantum field 
theoly. which exists on a conformal supenvorid M is presented. Emphasis is placed 
on the investigation of the action of an infinite-dimensional group G of spacetime 
symmevies on M .  Starting with a one-particle lheoy, this action induces a strongly 
mntinuous representation of DiffT(S' )  on the single-panicle Hilbert space. After 
second quantization the group of implementers turns out to be a non-trivial central 
extension of Dif fT(S' )  bj U ( l ) ,  and a Schwinger term ceurs ,  which gives rise to 
the anomalous transformation law of lhe energy-momentum tensor of the theoy. This 
transformation law is studied, and an interesting connection lo gmtnetly is established. 

1. Intmduction and summary of results 

At its critical point the two-dimensional king model is described by a free masseless 
Majorana field theory which possesses a symmetric and-due to scale invariance of 
the underlying statistical model at T,-traceless canonical energy-momentum tensor 
O@". For an early and physically clearcut approach which uses a doubled version of 
the Ising model based on a complex Dirac field, and which allows a simple description 
of the scale invariant limit see Schroer and Tmong (1978). The Schwinger functions 
of this free field theory obey the conformal Ward identities which implies invariance 
under the Euclidean conformal group in two dimensions (Saint Auhin 1987, Miwa 
1984, O'Carrol and Schor 1982). For this reason it is natural to regard the Majorana 
field as an object existing on the so-called conformal superworld M, which is nothing 
but the universal covering space of compactified Minkowski space M' (Mack 1987). 
%king this as a motivation we present in this paper an explicit and mathematically 
rigorous construction of such a free masseless Majorana field theory on M which- 
when second quantized--exactly reproduces the Majorana field theory of the two- 
dimensional Ising model. Although emphasis is laid upon an algebraic treatment, it 
turns out that there is a very interesting interplay between geometrical and functional 
analytical methods in this approach. 

The most intriguing fact about ( 1  + 1)dimensional conformal kinematics is the 
existence of an infinite-dimensional Fr6chet Lie group G which acts as a group of 
spacetime symmetries on M and which contains the Minkowskian conformal group 
as a subgroup (Schomerus and Mack 1990, Schroer 1988). We shall take this classical 
group action, which is briefly sketched in section 2, as a starting point. In section 3 
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2490 W Mademer 

the classical field theory of a two-component free and masseless Majorana field is 
introduced on M within a Lagrangian formulation. Classical field configurations mr- 
respond to smooth sections of a vector bundle E over M. Due to factorization of 
the classical theory in light mne coordinates in a theory of right and left movers, 
the chiral components of the Majorana field, which are solutions of the zero mass 
Dirac equation obeying antiperiodic boundary mnditions at 'infinity', can be treated 
independently. They turn out to be in one-to-one correspondence to smooth sections 
of the Mobius strip. In section 4 this one-to-one correspondence is used to extract 
a complex single-particle Hilbert space 71 together with an antilinear involution C 
which implements the reality condition of the Majorana field configurations on 71. 
Moreover a unitary representation of the twofold covering Diff;(S') of the con- 
nected component Diff+(S') of the diffeomorphism group of the circle is found 
which mmmutes with C. Strong continuity of this representation is proved, and a 
Lie algebra of self-adjoint differential operators is obtained, which is interpreted as 
the Lie algebra of observabies of the singie-particie theory. Each vector fieid F in 
Vect(S') is associated with an observable D(, such that the mapping c DE is 
a Lie algebra homomorphism. The differential operator which corresponds to the 
constant vector field is identified with the conformal Hamiltonian denoted by Do, 
which has an entirely discrete spectrum Z + $. Its spectral projection P on the pos- 
itive energy subspace of D, satisfies C P  = (1 - P ) C ,  and with this single-particle 

Mackey (1963) in section 5, is straightforward. Strictly speaking associated with the 
pair (71,C) there is a uniquely defined self-dual C' algebra ZI(71, C), on which the 
previously mentioned group acts via Bogoliubov automorphisms. This action is con- 
tinuous provided the automorphism group carries the strong operator topology. The 
orthogonal projection P gives rise to an SU(1,l)-invariant Fock state over ZI(71, C ) ,  
which implies that this symmetry is unitarily implemented in the GNS representation. 
In section 6' the general implementation problem is discussed, and the necessary 
and sufficient HilbertSchmidt condition for implementation of Bogoliubov automor- 
phisms on Fock space is proved for all automorphisms under consideration. The so 
obtained group of implementers is a central extension of Diff;(S') by U(1) ,  which 
acts reducibly on Fock space. Restriction of this group to the even-particle subspace 
Fe, , (PX)  yields a central extension of Diff+(S'), acting irreducibly on FeV(P71). 
'lne smaiiest c' aigebra which is generated by these unitaries on B(Fev(Piijj is 
then identified with the algebra 0 of chiral observables. It is interesting to see that 
0 can be obtained by an abstract construction similar to that of the Weyl algebra. 
Recently Schroer has pointed out that the physical meaning of those diffeomorphisms 
which do not come from a Mobius transformation is connected with the "ita- 
l'dkesaki theory for non-connected intervals. For connected intervals one obtains the 
LII"","., &"up 

Whereas implementation of single Bogoliubov automorphisms is dealt with in 
section 6, implementation of one-parameter groups requires additional work, and 
in section 7 it is proved that an arbitrary one-parameter group {eiD<' : t E W) 
in Diff;(S') admits a lift to a strongly continuous one-parameter group {eio(()' : 
1 6  R} on Fock space. The Lie algebra of the self-adjoint generaton {e({)  : E E 
Vect( S' j} yields to a non-trivial central extension of the Lie algebra of vector fields 
on the circle, and its complexification contains the Virasoro algebra as a subalgebra. 
The value of c = $ of the conformal charge can be easily read from the explicit form 
of the Schwinger term, Moreover it turns out that for v', 'p in a dense domain in Fock 

thecpj 2t h8fld secofld (pfl-ti--tiafi, mrfnrmd thP af SePge! 2-d 
P-*L".'L.'" 

- 

Xdiih:..r mm..n 
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space, c1 (p', @([)p) is a continuous linear functional, which demonstrates that the 
energy-momentum tensor in the second quantized theory is indeed an operator-valued 
distribution. In section 8 the anomalous transformation law of the energy-momentum 
tensor is studied in detail. For this purpose the adjoint action of Difft(S') on the 
central extension of Vect(S') is computed, and a nonlinear third-order differential 
operator, A on DTfft(S1), which is closely related to the Schwarzian derivative, k 
obtained. Finally the connection with a more geometrical p i n t  of view found in 
Segal (1981) is established. 

2. Kinematics 

2.1. General considerations 

A detailed investigation of analytic continuation in the case of conformal symme- 
tries has revealed the fact that whenever the Schwinger functions of an underlying 
Wightman field theory exhibit invariance under infinitesimal transformations of the 
Euclidean conformal group SO(d + 1, l), its Wightman functions admit analytic con- 
tinuation to a domain of holomorphy which has as a real boundary an infinite sheeted 
covering space M 2 R x Sd-' of compactified Minkowski space M e  (Liischer and 
Mack 1975, Mack 1987). Because of this M is called the conformal superworld. In 
addition there is an action of an infinite sheeted covering group of the conformal 
group SO(d ,2 ) /Zz  on M, which respects the causal ordering. Special conformal 
transformations are well defined and Einstein causality is restored for the price that 
M contains an infinite number of identical copies of Minkowski spaces, which is 
described in picturesque language as an 'infinite staircase of heavens and hells'. Thus 
one is led to the conclusion that a &dimensional conformal quantum field theory 
exists on M rather than on Minkowski space. 

In this paper we start with the (1 + 1)dimensional Minkowski space M = Rz 
with the standard metric dx" 8 dxo - dx' @ dx'. Then M has compactification M C ,  
which is covered by M = R x Sm. It is appropriate to think of M as the submanifold 

M =  { ( o o , c o ~ u ' , s i n o i ) ~  U ~ E W , U ' E ( - ~ , T ] } C R ~  (2.1) 

with coordinates (go, U') .  A global causal structure on M is induced by the Lorenz 
metric g = d o o  8 doo  - d o '  8 do'.  It coincides with the causal structure on M 
inherited from the pre-image of M under the surjection M - M which is defined 
by (aO,coso ' ,s inu ' )  Y ( x + ( a t ) , x - ( u - ) )  E M, where 

.*(mi) := tan a * / 2  (2.2) 

and where X* := xo f x' and o* := U' f U' denote light cone coordinates on M 
and on M respectively. 

2.2. An infinite-dimensional group of spacetime symmetries 

The case d = 2 is different from the higher dimensional case, since here the infinite- 
dimensional Frkchet nuclear Lie group 

- 
= (Diff+(S') x DTfft(S'))/Z (2.3) 
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acts as a group of spacetime symmetries on M (Schromerus and Mack 1990). ?b have 
a closer look at this action we recall that DTff+ (SI) is the universal covering group of 
the orientation-preserving diffeomorphisms of the circle. Its elements can be identified 
with smooth functions T : R -+ R, obeying r ( a  + 2rr)  = .(U) + 2rr and r' > 0. 
With this identification a smooth action of DTff+(S') x DTff+(S1) on M is defined 
in coordinates by U* Y .*(a*), where ( T + , T - )  E DTff+(S1) x DYff+(S'). From 
(2.1) it follows that this action factorizes to an action of G on M. The kernel K of this 
factorization is isomorphic to Z and consists of all ( s + , s - )  with +(&) = O* + 
2rrk* and I C + +  12- = 0. Elements in G are denoted by [T+. T-1, which indicates that 
[T+, 7-1 is the image of ( T ~ ,  T-) under the surjective homomorphism DTff+(S') x 
Diff t (S ' )  i G. Let T Y [ T I  be the covering homomorphism DTff+(Sl) -+ 

Diff+(S'), which is given by [.](e'") := provided we identify S' with { z  E 
C : IzI = l), and let 

- 

@ : G - Diff,(S") x Diff t (Sm)  (2.4) 

be the homomorphism defined by @([T+,T-]) := ([.+],[T-]), then kerQ = (Z x 
Z ) / K  coincides with the centre 2 of G, It is illustrative to express these relations in 
terms of a commutative diagram: 

K -  Z X Z  - 2 

I 
1 

1 

- I1 
li + Diff+(S ' )xDif f+(S ' )  + 

1 
G 

I @  
Diff+(S') x Diff+(S ' )  = Difft(S') x Diff+(S'). 

23. The conformal goup 

The six-dimensional subgroup (PSL(2,R) x PSL(2,Iw))/Z c G is an infinite sheeted 
covering group of the conformal group S0(2,2)/Z2 in two dimensions. Since 
PSL(2,Iw) = S U ( l , l ) / Z 2  by Cayley transform, since PSL(2,R) x PSL(2,Iw) zz 
S0(2,2)/Z2 and since elements IT+,.-] in (PSL(2,W) x PSL(Z,R))/Z are char- 
acterized by @([~+.r-]) := ([T+],[T-]), where 

- 
- N 

we have exactness of - 
2 - (PSL(2,R) x PSL(Z,Iw))/Z - SO(2,2)/Z2. (2.7) 

The conformal group plays a special role not only because its generators have a 
direct relationship to physical obscrvable quantities, but also because it turns out 
to be exactly the invariance group of the ground state of the second quantized 
free field theory which we shall introduce in the next section. In order to obtain 
the fundamental fields of the (PSL(2,R) x PSL(2,R))/Z action on M, we ob- 
serve that (2.7) implies the existence of a unique lift of the one-parameter group 

- 
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( e x p t X t , e x p t X - )  to (PSL(2,R) x PSL(P,W))/Z, where X = (Xt ,X-)  de- 
notes a generator in su (1 , l )  $ S U ( I , I )  2 so(2,Z). Since Lie((PSL(2,R) x 
PSL(2,R)) /Z)  = Lie(PSL(2,Iw) x PSL(2,R))  c Lie(Difft(S') x DTff+(S')) = 
Lie(Difft(S') x Difft(S')) = Vect(S')$Vect(S') the lift of the previously men- 
tioned one-parameter group uniquely determines vector fields ( C x + ,  Cx-), which we 
shall identify with smooth real-valued 2n periodic functions on R. Then the flow 
1 + FI(: of Cx is a one-parameter group in Diff,(S') and, by construction, we 
have 

I - 
N 

Y Y 

- 

' WFI':+, F k l )  = LexPtx- ) (2.8) 

where @ has been defined in (24). Here A Y LA is the homomorphism SU(1 , l )  + 

Diff+(S'), which has kernel {ll,-ll), and which is defined for A = (i g) by 
L,(e'O) := (aeio +- @)/(Beiu + 6) as in (2.6). Differentiation of the action of 
the one-parameter group t Y [Fl':', FI':-] of diffeomorphisms yields the funda- 
mental field sx on TM. Note that cX F c ( ~ + , ~ - )  cX+ +cx-. Sincs M = W I S' 
is a product of one-dimensional manifolds it is parallelizable, and TM has a global 
frame {a,,,0,). The global frame of light cone vector fields {a+,a-) is then ob- 
tained by 8, := :(Oo+Ol), and it is appropriate to re-express the fundamental fields 
of the action of the covering of the conformal group in terms of these fields. As can 
easily be seen 

(2.9) 
i cX* = c a, 

where c* : M - W are functions that depend only on one light cone coordinate, 
such that c * / 6  = 0. If C* = constant, then ctO+ +- c - 0 -  generates the Abelian 
subgroup (U(1)  x U ( l ) ) / Z  of translations ui c ui + ci, which is a covering 
group of the maximal torus T2 E U ( l )  x U ( 1 )  in S0(2,2)/Z2. By (2.2) we observe 
that the action of ( U ( 1 )  x U ( l ) ) / Z  does not project to spacetime translations on 
Minkowski space. Nevertheless, as mentioned before, a conformally invariant and 
hence masseless quantum field theory exists on M, and therefore we shall identify 
the generators of the unitary representation of ( U ( 1 )  x U ( l ) ) / Z  on the Hilbert 
space of physical states with the energy-momentum observables of the theory. Then 
the vanishing mass of the particles implies that the most natural kinematical descrip- 
tion is given in terms of light cone coordinates, and for that reason we shall focus 
our attention on the fundamental fields a, and on the one-parameter groups they 
generate. 

2.4. Arbitrary one-paramerer groups and [he compact picture 

Arbitrary one-parameter groups in G are generated by vector fields (tt,<-) E 
Vect(S ' )$Vect(S ' ) .  They are of the form t H [Fl':,FI';] for t E Iw. Note 
that by compactness of S' any < E Vect(S ' )  is complete, and the corresponding 
one-parameter group of orientation-preserving diffeomorphisms of the circle has a 
unique lift to its universal covering group DTfft(S1). It is clear that F - FIcl yields 
the exponential map e x p  : Vect(S') - DTff+(S'). However care has to he taken, 
when working with the exponential, since exp is neither locally surjective nor globally 

- -  
- -  

Y Y  
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injective (Pressley and %gal 1986) and its image generates a nowhere dense subgroup 
in DTff +( S') (Goodman and Wallach 1984). 

A pair (p+,  p-) of submersions 

p + : M - S  1 (2.10) 
* is defined by p*((aO,coso',sin u i ) )  := e"' . In the following we shall tacitly 

identify the manifold S' with the complex unit circle. Moreover we shall refer to 
eio* = =*(a*) as compact picture coordinates. By definition of pf we observe 

P* 0 [T+. 7-1 = [.*I 0 P* (2.11) 

where [ T + ,  T-] and [T*] are regarded as diffeomorphisms acting on M and on S' 
respectively. As a consequence the fundamental fields cx* of the (PSL(2 ,R)  x 
EL(2,R))/Z action and the S I J ( l , l ) / Z 2  action on S' are p*-related 

- 

TP* 0 <Xi = C,y* 0 P+. (2.12) 

This terminates our brief overview of conformal kinematics in 1 + 1 dimensions. 

3. The fme Majorana field 

3.1. A Lagrangian scenario 

We introduce the classical field theory of a single massless fermionic field Q on 
(M , g) which has Lagrangian 

(3.1) 
1- - c = -qypa,,q. 
2 

Here yo = ( y  A),yi = and y5 = yay' = (-::) is a real representation of the 
y-matrices in 1 +1 dimensions obeying {yc ,y"]  = 277"" where q'" = diag(1,-1). 
The fermionic field Q is a smooth section of the trivial complex bundle M x C2, and 
its components ($;) of q are chosen such that y5$+ = -$+ and y5$- = $-. 
Moreover := (CW)ly0, where C : M x C2 - M x C2 is a fibre-preserving map 
which acts on each fibre as an antilinear involution, and which is given by 

i ( o o - o ' ) T  (unto 1 -  )¶-) ,  
c((o0, cos a ' , s in  u', q - ,  q+ ) )  := (9, cos o i , s in  a ' , e  q ,e  

(3.2) 

Here the bar over q* denotes complex conjugation in @. Integration of (3.1) over 
M yields the action 

(3.3) 

The functional @ c S [ Q ]  is minimized by field configurations Q which satisfy the 
zero mass Dirac equation 

y!JLapQ = 0 

(a,,X+y = 0. 
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Using the equations of motion, the on-shell expression of the energy-momentum 
tensor reads 

@’”(@) = Li&’;”q. 2 (3.4) 

Neutral particles are described by a Majorana field which is obtained by imposing the 
reality condition C o = q on field configurations satisfying (3.4). This implies that 
Q = (I) becomes real in the sense of the bundle map C. Since the components of 
the energy-momentum tensor correspond in principle to physical observable quanti- 
ties, the densities must be periodic in light cone coordinates which forces the spinor 
fields to be either periodic or antiperiodic in U*. Here periodic (= Ramond) and 
antiperiodic (= NeuveuSchwarz) boundary conditions are closely related to the two 
real line bundle structures on M. We shall focus our attention on the latter, since 
they will lead naturally to the correlation functions of the conformal field theory of 
the two-dimensional king model (McCoy and Wu 1973). 

3.2. 7he geometric setting 

In order to establish a one-to-one correspondence between the chiral components 
of the Majorana field configurations and smooth sections in the Mobius strip, we 
observe that the reality condition C o q = Q suggests regarding the Majorana field as 
a smooth section q : M -+ E ,  where E is the real sub-bundle in M x C2 with fibre 
R2, which is left invariant by C. Then points in & can be parametrized by 

( u o , u l , r c , r - )  y (uO,cosu’,sin u l , e - @ - e ’ ) / 2  T ,  - e - I ( u ~ t u ’ ) / 2 r t )  (3.6) 

where T* E R. For I, := (-r,r), I, := ( 0 , 2 )  we define open sets U, c E as 
the image of I x R2 under the map (3.6). According to that U, : U, - I ,  x R2 
is defined as t i e  inverse of (3.6). Then (U,,  ul),E(l ,ZJ is an atlas for C. Moreover 
(I, n (I2 is the disjoint union of two open sets V, such that u,(Vt) = u2(Vt) = 
( 0 , ~ )  x R2, u,(V-) = (-r,O) x Rz and u,(V-) = (n,2r) x R2. From this and 
from (3.6) the transition functions a;, : Vi. - GL(2,R) can be computed. They 
turn out to be locally constant with ‘37, = i l l ,  and we have the following proposition. 

Proposition 3.1. The real vector bundle E - M over M is the Wlthney sum & = 
p:!Vl fB p p l  of the pullback p > m  of the Mobius strip Dl induced by the pair 
(“,pi.). where pi. is the submersion defined in (2.10). 

Proof. For simplicity of notation we shall identify the total space of the Mobius strip 
with the real sub-bundle 

rm := { ( e ~ ~ , e - l = / 2 ~  ) :(U,?,) E (-r,r] x R )  

in S’ x C, Then by definition of the submersion pi.  we have 

pig1 = {(oo,cosu’ ,s in U ’ .  ~ - I ( ~ ’ * ~ ’ ) / ~ T * )  : ( u o , u l , r * )  E (-.,.I x R )  

and because of (3.6), E = p:!JJl@ p:DI lollows. 0 
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Note that by proposition 3.1 

TLt p p l  + m 
1 1 (3.7) 

M 2 S' 

commutes. Moreover proposition 3.1 allows the complete characterization of the 
Majorana field configurations which obey NS boundary conditions. We have 

Proposition 3.2. A classical Majorana field configuration obeying NS boundary condi- 
tions is a smooth section Q : M - .f such that its chiral components $i correspond 
uniquely to smooth sections f* : S' - ZIJl via T* o $* = fi o pi. 

Proof. We observe that for each smooth function 1p : Iw -+ R with ip(u + 2 x k )  = 
( - ) k f ( u ) ,  k E Z, there is an associated smooth section f : S' -+ mwith f ( e '" )  := 

e-io/2 1p(u)). This correspondence is one to one, and given f+ and f- we 
define 

(*) Q((o ' ,cosu ' ,s in  U ' ) )  

. .  
:= ( U ' ,  cos u' , sin u' , e-'c /"p-(u- ) , e- io+/z ip+(u+))  

= (u',cos &,sin U ' ,  $-, $+). 

Then C o Q = Q , rf o Gi = fi o pi. and by construction Q solves (3.4), which is 
equivalent to $-/ut = $ + / U -  = 0 in coordinates. Conversely any Majorana field 
configuration satisfying the NS boundary conditions can be written in the form (*) 

0 with uniquely defined functions 'pi. 

4. Single-particle theory 

4.1. Chiral decomposition and the construction of a single-particle Hilbert space 

The fact that Majorana field configurations decompose into two independent chi- 
ral field configurations $+ which are in one-to-one correspondence with sections 
f* : SI - 9R together with the factorization of the action of the classical confor- 
mal group (DTff+(S') x DTff+(S'))/Z in light cone coordinates allows fermionic 
theory to be decomposed into a product of two chiral parts which can be treated 
independently. 

In the following the sutfix f will he dropped and we restrict attention to only 
one chiral component $ of Q and to only one component of the energy-momentum 
tensor 0''". Note also that we drop the suffix f from the periodic coordinate U 

which parametrizes the unit circle in the compact picture. 
The Mobius strip, which has been introduced in the proof of proposition 3.1 is 

obtained as the real sub-bundle of S' x C which is left invariant by the bundle map 

c: S' x 1;: - SI x c (4.1) 
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given by C((eiO, 4)) := (e 'O,e- ibq) .  By construction the maps C and C are related 
by r* o C = C o T*. Let r( S', S' x C) be the complex vector space of smooth 
sections f : S' - S' x C, then C induces an antilinear involution on r( S',  S' x C) 
which we denote by abuse of language with C, and which is defined by 

Then the real subspace ;(id + C)T(S1,S1 x C) coincides with r(S1,Dt), the real 
vector space of smooth sections f : S1 -+ DI. The sesquilinear standard inner 
product on C induces a fibre metric (-,.) : r(S',S' x C) x r(S',S' x C) -t 
Cm(S1,C) which is defined by ( f l , f 2 ) ,  = mf2(u). Then multiplication of the 
C"( S' ,  @)-function U - ir(f1, f2), with the 1-form du on the circle yields the 
1-form ; r ( f i , f i ) d u  which can be integrated over S1. The factor +r has been 
introduced for later convenience. Thus we have obtained a non-degenerate positive 
definite sesquilinear form (.: .) on T(S': S' x C) which is @en explicitly by 

f - C f : = C o f  ( 4 4  

(4.3) 

Let  H be the Hilbert space completion of r(Sl, S I  x C), then H E L 2 ( S l , d u ) ,  and 
C extends to an antilinear involution on W which satisfies 

(CfI.Cf2) = ( f 2 , f I ) .  (4.4) 
Naturally Re(H) = $( l l+C)H is just the real Hilbert space completion of r(S1,Dt). 
By taking proposition 3.2 into account, we shall refer to Re(31) as the real Hilbert 
space of chiral field configurations, and from this it is clear that 31 can be regarded 
as the single-particle Hilbert space of left moving or right moving Majorana fermions 
respectively. H contains dense linear subspaces whose elements differ in their analytic 
properties and which will be of interest in what follows. Let {em)mEl,em(u) := 
elmo be the complete orthonormal system in 71, and let for each n E N,Hn := 
Span{e, : -n < IC < n - 1) be the finite-dimensional subspace of trigonometric 
polynomials of degree less than n, then 

%POI := U 31" (4.5) 
nER 

is dense in 71 by the Stone-Weierstrass theorem. Moreover Hpo,  is contained in the 
dense linear subspace Ha, of real analytic elements, where real analyticity refers to 
U coordinates. Equivalently f E 31," if and only if f( -i log z )  admits a convergent 
Laurent expansion in some annulus 3 S'. Finally we denote by HH.,,,,, ~. . . . . . .. the dense 
linear subspace of complex-valued C" functions on the circle. Then the inclusions 
H 3 Hsmooth 3 31," 3 Hpol are valid. 

4.2. A unitary action of the group of spacetime symmetries on the single-particle Hilbert 
space 

Next we look for an action of DTff+(S') on 'H which is restricted to an orthogonal 
action on Re(31). In principle t h e  requirement of unitarity (respectively orthogonality 
on Re(H))  can be motivated in the Lagrangian formalism but we will not pursue this 
line of reasoning. Instead we give an expression for a twisted action of DTff+(S') 
on H which differs from the one given in Pressley and Segal (1986). 
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Definition 4.1. Let r E DTff+(S') then for any f E 'H a linear operator U, on 'H is 
defined by 

( u ~  f ) ( u )  := ei(T-'(q)-q)/zf  o T - l ( u ) J e  

The phase factor e i / z ( r - ' (q ) -q )  which establishes the U,-invariance of Re('H) - 
zfi be hrerpretefi 2 !.mq& r - &/'2(r-'-idSi) gfi Diff,(sl) %!ces & 
Cm( S',T), where T is the one-dimensional torus (Bien 1988). 

Proposition 4.2. Let r - U, given as in definition 4.1 and let S be the generator 
of the centre {? : n E Z] in DTff+(S1), then 

U : DTff+(S') -B('H) 

is a unitary representation of DTff,(S') which wmmutes with C and which has 
ker U = {Ezk : IC E Z}. 

Prmc The verification of the representation property is straightforward. 'Ib see 

e-ia/2 x f ( ~ - a ) a n d f o r a = 2 r r w e h a v e  ~ = E w i t h U , f = - f .  Since U i s a  
homomorphism the centre {En : n E Z) is mapped onto the group {I,-I}, which 
implies ker U = {En : n E Z)/ZT Unitarity follows from definition 4.1 together 
with (4.3), and using (Cf)(g) = e - ' " f o ,  we obtain (CU,) (o)  = ( U , C ) ( u ) ,  

ker ~i = {ZZ' ; k E z ) ~  wp. o h s e ~ e  that if r ( g )  = g + ( u , f ) ( g )  = 

which proves the first part of the assertion. a 
4.3. Topological preliminaria 

In the sequel we will denote the twofold covering DTff+(Sl)/kerU of Diff,(S') 
by DiffJS'). Note that U, = -1 reflects NS boundary conditions or equivalently 
the non-trivial bundle structure of Ill. In order to investigate the continuity prop- 
erties of U, when B(B) is given the norm and the strong operator topology, we 

algebra Vect( S') of C" vector fields on the circle (Pressley and %gal 1986). Since 
Vect( S ' )  is a free module over the ring Cm(S1,R) with basis d /da ,  vector fields 
may be identified with elements in C"(S',R). The topology on DTff+(S1) is the 
initial topology induced from the injection DTff+(S') + Cm(S1,R); T H i ,  where 
i := T ( U )  - U. This implies that convergence of a net of diffeomorphisms 
to a diffeomorphism r is equivalent to uniform convergence [IT?' - dn)llm -+ 0 of 
all derivatives r c )  = dnr , /don .  Here A is a directed set, and since the Frechet 
topology is metrizable, it is enough to consider the case A = M. The topology 
on Diff,(S') and on Diff;(S') is the quotiend topology induced by the covering 
homomorphism. 

4.4. Strong continuiry of the representalion U 

If B(%) carries norm topology, then T Y U, is continuous provided Diff;(S') 
has discrete topology (Pressley and Segal 1986). This follows from the observation 
that for each diffeomorphism [ r ]  E Diff,(S') # id,, there exists an open interval 

- 
reedii ibdi Diff,(S?j ij a sin,pie i+'iec'iei Lie )yo-uiip -iiloGei;r. ';re 'de 
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I c Si which is sent into the interior of its complement by [r]. Choosing a function 
f in 7f which has support in I then implies ( U , f ,  f )  = 0, from which we conclude 
IIUT - 111 2 a. If [ T I  = id,,, but r 6 ker U then U, = -1 and IlU, - 111 = 2. 
Hence ]lU,,,- U,2)) 2 fi whenever rl o 7;' 6 ker U. On physical grounds this result 
is not surprising, since it is well known from elementary quantum mechanics that, in 
general, kinematical symmetries cannot be implemented norm continuously on Hilbert 
space. Therfore the strong operator topology on B(X) seems more appropriate and 
in fact it turns out that in this case r -+ U, is continuous. ?b prove this assertion we 
need the following lemma. 

Lemma 4.3. Let (rn)nEW,r E Difft(S1) with r, + r. 
- 

"hen the sequence 
of unitaries converges strongly to U,. 

- 
Since taking me inverse in Dif+js^:j  is continuous, we have r;' + F' 

which in turn implies llr;' - r-'Ilm -+ 0 and ll(r;')'- (7-')'Ilm - 0. For all 
m, n E A we observe 

= :(*). 

But then limk+m(e,,(U,, - U , ) e , )  = 0, since by continuity of the square root 
J : Iw+ Y Rt and by equicontinuity of continuous functions on compact sets, 
1 1 ~ ; ~  - ~ - ~ 1 1 ~  - 0 and ll(r;')' - ( ~ - ' ) ' l [ ~  -+ 0 imply that (*) can be made 
arbitrarily small. Weak convergence UT" - U, follows by an c / 3  argument from the 
fact that any f E 71 can be approximated by an element E;=,(., , f}em, E H,,,, 
since H p 0 ,  is dense in H. This finishes the proof, since a net oc' unitaries which 
converges weakly always converges strongly provided the limiting operator is unitary. 

0 

'lhking lemma 4.3 into account, the continuity of the covering homomorphism 
Diff+(S') + Diff;(Si) together with ker U = {ZZb : k E E} and lemma 4.2 imply 
tho fnlln.vinn thonmm . a l l  LY"""L.16 L..""IL.III. 

Theorem 4.4. U : Diff;(S') - B(X) is a faithful strongly continuous unitary 
representation of the twofold covering group of Diff+( S ' )  into the unitary operators 
in % ( H )  which commute with the  antilinear involution C on H. 

4.5. A Lie oigehra of differenlial operators 

Next we consider one-parameter subgroups. If E Vect( S I ) ,  then (F1'L)tEI is a one- 
parameter group of diffeomorphisms and by theorem 4.3 UF,e, is a strongly continuous 
one-parameter group in B(H),  which-by Stones' theorem-must be generated by a 
self-adjoint densely defined operator D,. In fact 
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Proposition 4.5. lb each vector field 5 E Vect(S') there corresponds a densely 
defined self-adjoint operator DE such that U,,, = eiD,l, and 

d 1  Dt = i f - +  - E  ( d o  2 I ) - ; '  

is essentially self-adjoint on the " n o n  U invariant domain Hamoorh. 

Proof. Going back to definition 4.1 one sees at a glance that UrHsm,,th c 'Rsmoorh. 
Then any unitary one-parameter group U,,,, is k e d  without ambiguity by matrix 
elemenrs on 'Rsmooth. which is then a domain of essential self-adjointness for the 
generator. If we Iix f E 'RHsmoorh, 

exists and equals - f f ' - i F ' f - ( i / 2 ) f f .  'Ib see this put (e iD,*f ) (u)  =: qt(u).  Then 
(q l (u )  - q o ( u ) ) / t  = qi(mlt(c) by the mean value theorem, where 0 < X ( u )  < 1 
and by continuity properties of FIEt and f we have 114: - qhli, - 0 as t + 0. Hence 

It is clear that c DE is a Lie algebra homomorphism, and i[Dt, Dq]  = DIc,vl 
is easily verified on 'RHsmoorh. Note that here [E,q]  = -(<q' - ? E ' )  denotes the 
Lie bracket in the Lie algebra of the diffeomorphism group. We recall that this 
bracket is minus the Lie bracket of vector fields. For the investigation of topological 
properties of this map we switch to the resolvent ( D t  - z)-' in order to work 
with bounded operators only. We recall that a sequence of self-adjoint operators 
is said to converge in the strong resolvent sense if their resolvents converge in the 
strong operator topology. A sufficient condition for strong resolvent convergence is 
then given by pointwise convergence of the sequence of self-adjoints on a common 
domain of essential self-adjointness (Weidman 1980). 

Proposifion 4.6. The map Vect( S') - B(X) given by ti ( Dc - z)-' is strongly 
continuous for each z E C \ R. 

Proof, By linearity of F Y DE it is enough to verify E ,  i 0 3 DE" + 0 on 7fHllmOoth. 
But this follows from 

< I I E " i I h ( f )  + IIF~ll:c*(f) + ~ l l € ~ l l ~ l l E ~ l l m ~ 3 ~ f ~  
where c i ( f )  are real positive constants depending on f. 0 

Note that the preceding proofs rely heavily on the smoothness of the objects 
involved. This allows, in principle, due to U invariance of Re('HH,m,,ch), U, to be 
reformulated in an entirely geometrical context as Cm map r( S',m) -+ r( S', 331). 
We shall, however, stick to the algebraic point of view which is the appropriate one 
when second quantization is concerned. 
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4.6. The compact picture Hamiltoninn and 2s positive energy spectral projection 

In fact the last ingredient we need for the second quantization process is the spectral 
projection P of the compact picture Hamiltonian on the positive energy subspace in 
71. Since the light cone fields 8, are p* related to d / d g  by (2.12), we shall identify 
D,,,, with the compact picture Hamiltonian. For ease of notation we denote the 
latter by Do, and with Do = i(a/au) - it follows that Spec(D,) = Z2 - 4 is 
entirely discrete, since Do has non-degenerate eigenvalues -71 - 4 corresponding to 
the eigenvectors e, ,  which form a total set in 71. The positive energy subspace is 
then obtained as the closure of Span{e, : m < 0) and the corresponding spectral 
projection P satisfies 

c p  = (n - p)c (4.6) 

since CD, = -DOC. P induces a polarization PH @ (1 - P)71 on 71 such that by 
(3.13) C acts as an antilinear isometry from P71 to (1 - P)X and vice versa. In U 

respective zcoordinates U - P can be written as an integral operator with singular 
kernel h- which turns out to be the cniral contribution of the two-point function of 
the free fermionic field theory. 

Proposition 4.7. Let ((1 - P ) f ) ( n )  = J:, d d K ( ~ , ~ ' ) f ( u ' ) .  Then 

e i ( d - i O )  
2 T K ( U ,  U ' )  = . .  e3[o'-;Ll) -.lo 

Proof. It is sufficient to verify 

But this follows from 

d z  e - " ' t n  e--nreinr i f n>O 
0 i f n < O  

by Cauchy's integral formula. 0 

5. Qunsifree second quantization 

5.1. The algebraic level 

Each pair ('H,C), where 71 is a separable Hilbert space, and C : 71 - 71 is an 
antilinear involution, has associated with it a self-dual CAR algebra II(71, C) which is 
generated from the range of a continuous @-linear map rI, : 71 + II(71, C), obeying 

(Araki 1987). As an UHF algebra, ZI(71,C) is obtained as an inductive limit of 
an ascending net of I,, factors 2l(71,,,Cn) = B(C2"). Here C, := C I a,, 
XHN := Span{e, : -n < k 6 n - 1). II (71,C) := UnENII(71,,C,) denotes the 

PO' 
norm dense subalgebra spanned by all finlte monomials Q(e,,!). . . '@(enk) .  The uni- 
tary action of DTff+(S1) on the one-particle Hilbert space 71 can now be lifted 

Q(Cf),*(fi)**(f,) + '@(f2)*(f1)* = (fi ,f2)1 and llQ(f)ll2 < (f,f) 
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to an action on %(H,C). Let Bog(H,C)  be the subgroup of all unitaries in 
B ( H )  which commute with C, then for each U the map Y ( f )  - Y ( U f )  ex- 
tends to the Bogoliubov automorphism nu E Aut(Zl(H,C)). By theorem 4.4 we 
have U, E Bog(H,C)  for each r E DTff+(S'), and r Y aT := mu, is a faith- 
ful representation of Diff;(S') into the automorphism group Aut(ll(H, C)). Let 
2?(%('H, C)) be the Banach algebra of all bounded linear operators on the Banach 
space %(H, C), equipped with the strong operator topology, then Aut(%(H, C)) 
is a subgroup in B(%('lf,C)) which is given the initial topology from the imbed- 
ding Aut(%(H, C)) + B(%(H, C)). As a consequence of the boundedness of 
Y : 71 -+ %(H, C) together with lemma 4.3 and proposition 4.5 we obtain the fol- 
lowing proposition. 

Proposifion 5.1. 
(i) The injective homomorphism Diff;(S')r c mT is continuous. 
(ii) lb each vector field ( E Vect(S') there corresponds a closed 

symmetric derivation 6, on dom(6O. Moreover nCEvect(s,) dom(6,) 3 
S p a n { Q ( f , ) .  . . Q(f,,) : n E W, f, E Hsmoath} is a common norm dense a-invariant 
*-subalgebra in a(%, C), on which 

where M ,  := \\fJ\\-' n:=, \\f,l\, which implies a, . (X)  + a , ( X ) .  Since \\ar\\ = 1, 
pointwise convergence of the net ( C X ~ ~ ) , , ~ ~  on all of %(H, C) follows from an ~ / 3  
argument, and by definition of the topology in Aut(Zl(H,C)) the map r + is 
continuous. 

(ii) With (i) we conclude that t c aFI1, is a strongly continuous one-parameter 
group in B(%('H, C)), which possesses a densely defined unbounded closed generator 

not uniformly continuous. From U invariance. of H,,,,,, we deduce that the norm 
dense *-subalgebra generated by the linear span of all monomials Y( f i )  . . . Y( f,) re- 
mainsinvariantunder theaction of a. Then \ l t - ' ( a F , t ~ ( Y ( f ) ) - ' @ ( f ) ) - Q ( ~ ~ f ) \ \  b 
[1t- l (Urf-  f) - DCfll  implies 

5, [>%,a !OM). Unboundedness of :!!e !Iftel fn!!nws knm the f i a  !!!a! T I-+ n- "F?, is 

and with (*) the Leibniz rule is easily verified. This proves that 6( is a symmetric 
0 +derivation on U(H,C), since in addition 6 ( ( X * )  = 6, (X)* .  



Conformal field Iheoty of the w Ising model 2503 

5.2. A Fock state over Iu('H, C )  

Given an orthogonal projection P in 'H with C P  = ( a -  P)C,  there is an associated 
quasifree pure Fock state up Over a(%, C) which is uniquely k e d  by the requirement 
Pf = 0 * w p ( Q ( f ) ' Q ( f ) )  = 0 (Araki 1987). Since for a quasifree state all 
truncated functionals for n > 2 vanish, expectation values of arbitrary monomials 
Q( f l )  . . . Q(f,,) are expressed as Pfaffians of antisymmetric matrices Aij  = -Al,  
which have entries Aij  = (Cf,, Pfj) for i < j .  Therefore the whole information 1s 
contained in the two-point function 

W P ( Q ( f l ) Q ( f Z ) )  = (Cfl, Pf,). (5.1) 

Let P be the projection on the subspace of positive energy of the compact picture 
Hamiltonian Do, introduced in section 4, and let w p  be the associated Fock state 
over ZI(X,C). men for fl,fi E xan,z c j i ( z )  := f j ( - i logz)  is analytic in a 
neighbourhood of the complex unit circle, and together with proposition 4.7, the two- 
point function (5.1) can be rewritten on 'Ha" in terms of complex contour integrals 

Proposition 5.2. Let f l  , f2 E 'Ha,, then 

where the zl integration is performed first. 

PrmJ With ( C f ) ( a )  = e-'"f(a) we have 
. -  

(Cfl,Pf,) = (C(1- P)fl,fZ) 

Here (*) follows from the fact that, according to proposition 4.7, the integral kernel 
of U - P in zcoordinates is (eozl - z 2 ) - ' .  and ( A * )  follows from 

which holds for any f E 'Ha", and which can be easily verified by inserting the Laurent 
expansion for in both sides of the foregoing expression. 0 

The e prescription in the preceding proof, and in the proof of proposition 4.7, 
sugesu  that the integral kernel of the bilinear form f l , f 2  - w p ( Q ( f l ) q ( f z ) )  
is obtained as the boundary value of the function (zl - z 2 ) - ' ,  which k analytic 
in U? \ {( zl, z 2 )  : z1 = z Z } .  The singularity in ( z1 - z2)- '  is approached from 
the interior of the domain {(zl, z 2 )  : lzll > 1z21} which contains S' x S' as a 
submanifold on its three-dimensional boundary {(zl, z 2 )  : lzll = 1 ~ ~ 1 ) .  
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5.3. Conformal invariance of the ground state 

Now the explicit form of the two-point function can be used to investigate the invari- 
ance property of the Fock state w p  under the right action T Y a ; ( w p )  := wP o a r  

of Diff;(S') on the states over %('H, C). Note that this action leaves the subset of 
all Fock states invariant, since they are in one-to-one correspondence with orthogonal 
projections P satisfying C P  = (I - P ) C ,  and a : ( w p )  = wu:pu,. In what follows 
it will sometimes be convenient to work in complex coordinates. From the discussion 
of conformal kinematics in section 2 and from definition 4.1, the S U ( 1 , l )  action on 
'If in zcoordinates is given by 

N 

j~cf with U T f ( r ) =  

where by (2.6) T is related to an element A = (;;) E S U ( 1 , l )  by [TI(.) = 
(az + p ) / ( p z  + E). Note that the generator -I of the discrete Zz subgroup in 
the centre of Diff;(S') corresponds to the transformation f Y -f. But since 
w p  vanishes on odd monomials of the field operators, this transformation leaves the 
Fock state unchanged, and we may expect an effective action of Diff+(S'), instead 
of an action of its twofold covering. Moreover on physical grounds S U ( 1 , l ) -  
or more precisely SU(l,l)/Z?-invariance of the vacuum must be satisfied in a 
second quantized conformal field theory. This is equivalent to the requirement that 
the classical conformal group is unitarily implementable in the Fock representation 
associated to w p .  In fact we have 

Proposiiion 5.3. Let A E S U ( l , l ) ,  and let [TI(.) = (ar  + P ) / ( P r  + E). Then 
oi;(wp) = w p ,  which implies invariance of the ground state under the S U ( 1 , l )  
action. 

Proof. lb prove proposition 5.3 it is enough to verify U:PU, f = Pf for f in 'Ha,, 
since 'Ha, is dense in 'H. But this is equivalent to U;(I - J')U,f = (U - P )  f ,  and 
we have 

= ((1 - P ) j ) ( - t ) .  
We have put U Moreover dC = [ ~ ] ( u ) ' d u  together with 
(,"m)-' = follows from d/dC(!T!O[T!-'(O) = 1 justifies 
(*). From the definition of [ T ]  from [ T ] ' ( z )  = (Pz+E)- 'and from lalZ-IPIZ = 1 
we deduce 

1 1 m[T](u) - [TI(.) m=- U - w  
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Furthermore I [ T ] - ' ( ( ) ~  > 1 leads to IC1 > 1 which is equivalent to lul > 1 * 
1[r](u)1 > 1. 'RI see this note that [TI(.) = ( a z + p ) / ( p z + h )  with la12-IpIz = 1. 
?hen z ++ [ r ] ( z )  can be easily extended by analytic continuation to a bijection Of 

the Riemann sphere e onto itself which leaves its equator { z  E C : lzl = 1) cz S' 
invariant. With the notation @\S' =: HtW1uHt,)  where Hto) and HImI denotes the 
hemisphere containing the south pole 0 and the north pole m respectwe y we observe 
that by continuity of z c [TI(.) either [7 ] (Htw1)  = H(ol or [ T ] ( € I ~ - ) )  = Ht-1 
must be true, since [ T I  : c\S1 + e\S1 is still a bijection. But z c-t [.I(.) has a pole 
for z = -B/Z with Iz1* = (1 + ~ C Y [ ~ ) / ~ C ~ *  > 1 which implies [ T ] ( H ( ~ ~ )  = Ht-1. 
Consequently any point in Htm)  is mapped into a point in Hlml and therefore 

0 

,. 

1.1 > 1 3  IUI = 1[.1(Z)l > 1. 

6. Implementation on Fock space 

6.1. Implementation of conformal ymmetries 
7b summarize the discussion, we have obtained a triplet (Zl(31, C),a,Diff;(S')), 
where a is a strongly continuous representation of Diff;(S') on the self-dual CAX 
algebra in terms of Bogoliubov automorphisms, together with a Fock state up which 
is SU( 1 , l )  invariant, and which gives rise to the GNS triplet ( r p , ' H p , R p ) .  In order 
not to confuse the one-particle Hilbert space 'H with the representation space 'H, 
of r p  we shall rename the latter by F ( P H ) ,  which suggests that 7 f p  = F(PH) is 
just the Fbck space of the positive energy subspace PH. In addition we shall write 
Q,(f) instead of r p o Q ( f ) .  

It is clear that the automorphisms a,,[~](e'") = (sei" + p)/(pe'" +E) be- 
longing to the previously mentioned SU(  l ,  l )  subgroup can be easily implemented 
on F(PH) by uniquely determined implementers Qp(Li,), which are given on the 
total set of finite particle vectors by 

6.2. The general implementation problem 
In general up will not be left invariant by the action of Diff;(S') and the ques- 
tion of implementability is more delicate. Since our goal is to obtain a unitary ray 
representation of the diffeomorphism group on Fock space, one has to show that the 
unitaries Ur on 'H satisfy the Hilbert-Schmidt condition, which in fact is a necessary 
and sufficient condition for a Bogoliubov automorphism to be implemented. We re- 
call that such an automorphism is said to be unitarily implementable if there exists 
an implementer Q p (  U )  E B(F( P'H)) such that for any A E Zl('H,T) the relation 

Q p ( U ) r p ( A ) Q p ( U ) *  = X P  O a u ( A )  (6.2) 

is valid. ?b treat the general case where a ; ( w p )  # w p  we have to introduce the 
Current group Currp( 'H,C) (Araki 1987, 1988), which is defined by 

Currp('H, C) := { Q  E ' B ( F ( P H ) )  : Q' = Q-' and 

Q Q p ( f ) Q '  = Q p ( U Q f )  for a E Bog('HH,C)J. (6.3) 
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By irreducibility of 7 r p  the kernel of the map U c UQ is isomorphic to the 
group U ( 1 )  and ifs range is the subgroup in Bog('H,T) which will be denoted by 
O,('H,C). Then by definition of Curr,('H,C) and O,('H,C) 

U ( 1 )  + Currp('H, C) -+ O,('H,C) (6.4) 

is exact. Elements in O,('H, C) are completely characterized by the HilbertSchmidt 
condition (Araki 1987), which states that if U E Bog('H, C), then U E O,('H, C) if 
and only if IIPU(1 - P)IIHs < 03 and Il(1 - P)UPllHs < 00. Note that CPU(I1 - 
P)C = ( n  - P)UP implies automatically IIPU(1- P)IIHs = I l ( n -  P)UPII,,, 
such that it is sufficient to prove one of the two conditions. Moreover by (6.3) we 
learn that a,, has an implementer if and only if U E O,('H, C). Therefore our next 
step is to show U, E O,('H,C). We do this by a slight modification of a similar 
proof given in Segal (1981). First we need the following lemma. 

Lemma 61. Let T E DTfft(S1) and let n 2 1 ,m 2 0. Then for each k E N  there 
exists a C(k) ER+ such that l(e-,,,UTem)l 6 C ( k ) / ( m +  r ~ ) ~ .  

Proof. Put T-' =: IC, then 

Here 'P = ~ m / ( m + n )  ( U )  and T , ( V )  =: h o n ; ' ( ~ ) / n ~ o n ; ' ( ~ ) .  Byconstruction of 
T , ,  the function ( t , y )  c ( a k / a l p k ) r , ( ~ )  is continuous in both t and (0 and we 
obtain 

I(e-,,, UTe,,,)I 4 C ( k ) / ( m  + n)k  

where 

by the boundedness of continuous functions on compact sets. 0 
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Proposition 62.  Let r E DTR~(s~). Then U, E o,('H,c). 
Proof. The assertion follows since the Hilbert-Schmidt mndition is satisfied. 

by the preceding lemma 
m m  

*=l m=o 

63. The explicit form of the implementers 
With respect to the polarization P'H @ ( U  - P)'H we rewrite U? as a operator-valued 
matrix 

where a ( r )  := PU,P,b(r) := PUT(ll - P) ,a ( r )  := Ca(r )C  and b ( ~ )  := 
Cb(r)C.  By proposition 6.3 b ( r )  : (ll - P)7f - PH is HilbertSchmidt, and 
a ( r )  is Fredholm with vanishing index, since due to the antilinear involution 
C d i m  ker a( r )  = dim CO ker a( I). If U, is close enough to the identity, then 
IIP - U : P U r ~ ~  < 1, and no level crossing occurs, since PH n ( U  - U:PU,)H = 
ker a( r )  = {O} .  In this case QP( UT) can be easily defined as in (6.1) hy its action 
on the total set of finite particle vectors 

Qp(ur)qpP(fi)..  .Qp(fn)ap 
eit l  .- .- 

det (1  + A*(U,)A(U7))li4 

* Y p \ ' J r J i l  . . . y p \ " ~ J n / c A P  c P n \ v l c P  
Y ,,, ,,, c ,  ,TI / l I  F j ̂ .._ ( 1 3  A ( T I j " * )  n (6.6) J "" (5 

HereA(Ur)  :=(lI-P)U,(PCJrP)-'  = z ( r ) a ( r ) - l .  Note that d ( r ) - l  existsas a 
bounded inverse, since a ( r )  is Fredholm. Existence of de t ( l+A ' (  U)A(U)) follows 
from Tr( A'( U,)A( U,)) < W. In (6.6) we have introduced creation and annihilation 
operators c ; , c p  which are defined by cp (h )  := Q p ( C h )  and c ; ( h )  := Q p ( h )  for 
h E P'H. With this convention the quadratic form in the exponent is understood as 
c>A(U,)c', := C:,,=, c; , (e_ , ) (Ce_, ,A(Li , )e_ . )c ; , (e - , ) .  The general case 
0 # dim ker a( I )  < 00 can be traced back to the former. Pick an orthonormal base 
{g l ,  . .  .,on) in ker R ( T ) .  men the operator f17=,(\up(gj)+VP(Cgj)) implements 
a self-adjoint unitary V, E O,('H, C), such that (-)"V, interchanges k e r a ( r )  = 
Span{g,, . . . ,gn] with ke rE( r )  = Span{Cgl , .  . . ,Con} without any other change 
(Araki 1987, Ruijsenaan 1978). But then U: := (-)"U,Vr E O p ( ' H , C )  and 
ker(-)"PU,V,P = (0 ) .  Let N =:E,"=, c>(e-j)cp(e-;) be the fermion number 
operator. Then exp(irrnN) implements the Bogoliubov automorphism f ++ (-)"f 
and, as a consequence, the unitary QP(U:)exp(isnN) fl;=l('@p(gj)+Qp(Cgj)) 
is an implementer for U,, where Qp(U:) is.given by (6.6). 
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6.4. A central atension of Din; (S' ) 

We recall that 9 is the generator of the centre in DTff+(Sl). Then U,f = -f and 
exp(inN)'€"p(f) exp(- inN) = I p ( U z f ) ,  which shows that U, is implemented by 
exp( inN)  multiplied by a phase factor. But exp( inN)  = Ilev-IIodd commutes with 
all implementers, such that QP(  U,) can be restricted to Fe"( PX) := II,,F( Pn) 
and to Fodd(Pn) := IIoddF(PX) respectively. Here II,, and IIodd are the orthog- 
onal projections on the even, respectively odd, particle number subspaces in F( PH).  
With the benefit of hindsight we define the Currp(7 i ,C)  subgroup (Diff;(S1))ext 
bY 

(DiffT(S1))ext := { Q  E ' B ( F ( P H ) )  : Q' = Q-' and 3r E DTfft(S') such that 

Qq.df)Q' = Qp(U7f)Vf E Zl. (6.7) 

Since the range of U is isomorphic to DTff,(S')/kerU rz Diff;(S'), we shall tac- 
itly identify elements in Diff;(S') with unitaries U,. Then the exact sequence (6.3) 
implies that (Diffy(S1))ext is a central extension of Diff;(S') by U ( 1 ) .  Moreover 
let (Diff+(S')),,, be the subgroup in 93(FeV(PH)) which is obtained as the im- 
age of the homomorphism Q P (  U,) c II,,Qp( Ur),  then the previously mentioned 
homomorphism has kernel {n , exp( inN) )  rz E,, and it follows that (Diff+(S1))ext 
is a central extension of the diffeomorphism group of the circle by U ( 1 ) ,  and the 
following diagram commutes. 

- ZZ - z2 
1 I 

II I I 
U(l) - (DiffT(S1))ext - Diff;(S') 

U(1) - (Diff+(S1))ext - Diff,(S'). 

65. A hvo-cocycle on Diff+(S')  

Let U c Diff;(S') be a neighbourhood of the identity, consisting of all U, with 
kera(r)  = 0. Then an algebraic cross section U - (DiffT(S1))exc, UT c Q P ( U T )  
can be defined where 6,( U, )  is given by (6.6) and where in addition the phase eiff 
in (6.6) has been put equal to one. This choice of phase then implies the following 
lemma. 

Lemma 6.3. For all U, E U let Q P ( U r )  be defined as in (6.6) with eis = 1. Then 

- 

(i) ur,ur2 = * GP(~, , )Qp(uT, )  = Q p ( a )  = a 
(ii) 

proof. Since 6,( U ; )  and 6,( U T ) *  implement the same algebra automorphism, 
we must have G P ( f / ; )  = e i C Q p ( U r ) * .  But by (6.6) both ( n P , & , ( U , ) * f l p )  = 
( & p ( U I ) f l p , R p )  and ( f l p , G p ( U ; ) Q p )  are real positive numbers f 0, which 

0 

u,,uT2 = -II j L j p ( ~ I , ) i j P ( ~ r 2 )  = G,,(-II) = exp(is1V). 

implies e'y = 1. This proves (i). (ii) is obvious from (6.6). 
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The previously defined local cross section can always be extended to all of 
Diff;(S1) such that properties (i) and (ii) in lemma 6.3 are satisfied globally. De- 
noting the extension of this local cross section with the same symbol U, H s,( U,) 
we then obtain a global two-cocycle ( U r , ,  U,) Y X(UT1, U T 2 )  on Diff;(S') from 
this extension, and 

(4.12) 

Moreover by property (ii) we have A( U7, U,, U T 2 )  = A (  U r , ,  UzU,z) = A(  U T I ,  U T z ) ,  
which implies that X factorizes to a two-cocycle on Diff+(S'). The latter can be 
rewritten as exp(iw([r,],[r2])) := A(Ur, ,U7, ) ,  and in a neighbourhood of the 
identity in Diff+(S'), it is straightforward to compute this cocycle explicitly. 

Proposition 6 4 .  Let V be the neighbourhood of U in Diff+(S') which is closed 
Y U Y C ~  ~ u u r r r p ~ a ~ w u  a u  I"! WIIILII Irj t v I I I I ~ I I G S  u r  t U .  incn 

s P (  UT, ) G P (  U,,) = UT, 1 Ur2 ) s P (  U ,  UT*) .  

.."A^- .....I. :..,:,,"*:,... "..A I L:-L r-,  ~.*:--,:-- .I - . I  m-- 

for all [r1],[r2] E V. Here the branch of z +, z1i4 is chosen such that z H 1 * 
z1l4  c 1, and all determinants are taken in PH. 

Proof. IT;] E V for i E {1,2) implies k e r a ( r )  = kera( r - ' )  = {0) for each 
T E { r l ,  r2,rl o rz).  Therefore the implementers Q p ( U T )  are given by (6.6) with 
the additional convention elff = 1. Taking vacuum expectation values of both sides of 
the identity G p ( U r , ) G P ( U T , )  = exp(iw([~~],[~~]))~~(U,,~~~) we obtain by using 
&,(U:,) = Gp(Ur l ) '  the expression 

e x P ( ~ ~ ( 1 ~ 1 1 ~ 1 ~ 2 1 ) )  

x (exp ($c>A(U;,)c>) Q P , ~ X P  ( + c P ( U , ) c > )  Q P ) .  

Since the ratio of the determinants is rea!, the  first factor on the right-hand side flees 
not contribute to the phase, and therefore it is sufficient to restrict attention to the 
contribution of the inner product only. Moreover A ( U T )  = (1 - P)U7(PU,P)-l  
implies U -+ A*(U;,)A(Ur2) = (PU,P)- 'U, , , .~(PU,~P)- '  = a ( ~ ~ ) - l a ( ~ ~  o 

r2)a(r2)- '  := X. Then, using the CAR relations it is straightfonuard but tedious to 
compute 
ie - . , /Ln*  A ~ I I *  jn* \ n  /L"* n i r r  jn- J n  i 
\-At, \IC,-\"r,/CP/ ' ' P ? C ~ V  \ T " P - \ " T I I C P /  a*,/ 

= det(ll -+ A(U;,)*A(UT2))'/' 

= dct (a (  r l ) - ' a (  r1 o r 2 ) a (  r2)-')'/'. 

Here the branch of the square root is taken where z ' / ?  + 1 if z - 1. Since 
dct  S' = also holds in the infinite-dimensional case, the assertion fol- 
lows from the observation z / r  = e2'arg(z), and from X* = a(r;')-la((rl 0 

~ ~ ) - ' ) a ( r ; ' ) - ' .  Then the cocyle is equal to (det  X/ det X*)'l4, and the pre- 
vi'ously mentioned choice of the square root then implies that z1l4 + 1 if z - 1. 

0 
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66. The C* algebra of chiral observables 

From the preceding discussion we learn, that the map [TI  c T([T]), where F([T]) := 
II,,s,( UT), is a projective representation of Diff+(S') into the unitary operators in 
23(FeF( PH)). Moreover the smallest C' algebra in B(Fev( PH)), which is generated 
by the range of the map introduced earlier, is identified with the abstract C' algebra 
U of chiral observables. Hence U is the group algebra of the central extension 

that U can, in principle, be obtained from an abstract construction which parallels 
the well known construction of the Weyl algebra in quantum mechanics. 

Theorem 6 5 .  Let U,,, be the free complex vector space over the set of symbols 
{W([T]) : [ r ]  E Diff+(S')). Then U,, is given a *-algebra Structure by 

(~;."+(~!)),,, of (ji&oiiiorphisr, group of i.ircie, it ij &er&ng to see 

W(['lI)W['Zl) = exp(iw([r,l, ['ZI))W([710 '21) 

W([']j* = W([r]- ' ) .  

The linear functional wo defined by 

is a state Over U,,,, and if (n,,n,,Sl,) denotes the associated GNS triplet, then 
there exists a unitary S : 31, - Fey( P31) such that 

- c.. / w / r - i \ \ c *  = r / r - i \  
u ' ~ o \ ~ * I l ' I J I '  L \ L ' l J '  

proof. Positivity of the linear functional w, follows from the fact that 
W ( [ r ] )  Y F([r])  is a *-isomorphism, P([T]) - (np,T([~])CLp) is positive, and 

uO(W([~]))(~)(CLp,  f([r])CL,). Here (*) holds, since 

,jet(l + A*(u7),4(UTjj-:/4 = det(pu,pu-:pj::: = d e t ( a ( r j a ( T - L ) ) L , -  1_.1," 

and since ( C L p , T ( [ T ] ) C L p )  = 0 iff ker a(') # IO). Hence w, is a state over U,,,. 
Since C L p  is cyclic for U, a unitary operator S : 31, + FeF,,(P31) is given by 

SsO(W([r]))S2, := f([r])CL,. Then * implies unitarity and, by definition of S, we 
have Sn,(W([ l - ] ) )S* = f ( [ r ] ) .  U 

7. Algebra of charges and Schwinger term 

7.1. Implementation of one-parameter groups 

In the preceding section we have only dealt with the implementation of fixed 
elements UT E b i f f ; (  SI), which Icd ~ to the construction -of the central exten- 
sion (Diff;(S1)jext as a group of unitaries in B(F(F'R)) .  Now we pose the 
question as to the conditions under which the strongly continuous one-parameter 
group {eIDc' : 1 E W) can be lifted to a strongly continuous one-parameter group 



Conformal field theory of the ZD king model 2511 

{eidQp(D') : 1 E R} in (Diff:(S1))ext, such that dQp(Dc) is self-adjoint on a do- 
main containing the Fock vacuum, and ( f l p , d Q p ( D c ) )  = 0. It turns out, that the 
only mndition which has to be satisfied for an affirmative answer is continuity Of 
{eiDC' : 1 E W) in the Pstrong topology on O,(%,C) (Araki 1987). Here the P- 
strong topology on O,(%, C) is generated by the family of seminorms { p ,  : f E %} 
where p , ( A )  := IlAfll + I IPA(1-  P)IIHs, and it is easy to see that this topol- 
ogy is strictly finer than the strong operator topology. Moreover for the previously 
mentioned one-parameter group it is sutficient to prove jjPD,(ii - PjiiHs < 03, 

since this automatically entails P-strong continuity (Araki 1987). Note that due to 
PDc + DEP = 0 we have IIPDt(l - P)IIHs = Il(1- P)DcPIIHs. For a detailed 
treatment see Araki (1988) and Lundberg (1976). 

Proposilion % I .  'lb each ( in Vect(S'), the one-parameter group {eiD' : t E R) is 
continuous m the P-strong topo!ogy; 

RooJ Let <( n) denote the nth Fourier mode of the Cm vector field (. 

1 - 
2 

= - (n  - m - l){(n + m). 
Moreover 

Now 

" _  
n=1 m=o 

Ihen 

l , , ,  r,,\ = ( 5  > <  I .  

But {<",("') 6 00, since any derivative of a C" function is square integrable, and 
1 = U. 0 with U = n + m we have 

n21,mpo 
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Z2. The Lie algebra of charges as a central ertension of Wct(S*)  

Because (DiffT(S1))ert is a central extension of Diff;(S') by U(1),  its Lie algebra 
Lie(Diff;(S')),,, must be isomorphic to a central extension Vect(S') @ R  of the 
Lie algebra of Vect(S') by Iw. Here Lie(Diff;(S')),,, is obtained as the algebra 
of unbounded self-adjoint generators of strongly continuous one-parameter groups 
in (Diffy(S1))exl. We shall refer to (Diffy(S1))ext as the Lie algebra of charges, 
which can be justified from (7.4). In fact, proposition 7.1 establishes the existence 
of such a d Q p ( D f )  E Lie(Diff;(S')),,, for each generator Df ,  but in general the 
fact that UT H QP(Ur) is a projective representation of Diff;(S') on F ( P H )  is 
reflected on the infinitesimal level by uniqueness of d Q p ( D f )  up to an additional 
constant. The situation is then summarized in 

Iw- Lie(Diff;(S')),,, -Vect(S'). (7.1) 

Z3. Normal ordering and Schwinger term 

In the previous discussion this constant has been k e d  by (C2p,dQp(Dt)C2p) = 0, 
which comes from the normal ordering procedure of fermiomic currents, moti- 
vated from the requirement of positivity of the spectrum of the second quantized 
compact picture Hamiltonian D,. But then [ c d Q p ( D f )  is a cross section 
from Vect(S') into its central extension, and the Schwinger term S([,q)ll := 
i [dQp(DF).dQp(Dn)]  - dQp( Drf,71) measures the deviation of this cross section 
from being a Lie algebra homomorphism. 

In Araki (1987) it has been proved that, given H, = H , . , C H i  -t H,C = 0 with 
the property llPH,(U - P)IIHs < m , i  E {1,2],  and H ,  not neccessarily bounded, 
the generators dQp( Hi) obey the relations 

i [ d Q ~ ( H , ) , d Q ~ ( f f d I  = dQP(i [HI3HZ1)  + ~ T ~ ( ~ P [ ~ P ~ H ~ I [ ~ P ~ ~ ~ I ) .  (7.2) 

Here Fp := 2P - U is a self-adjoint idempotent unitary which is diagonal on the 
polarization P'H @ (U - P)H. Moreover for H,, the generator can be written as the 
formal expression 

where the right-hand side converges when applied to the vacuum. Then with (7.2) it 
is easy to compute explicitly the Schwinger term S( . , . ). 
Proposition 7.2. Let [,q E Vect(S'), then 
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A 
- ,. 

Here the reality of 

2n + 1)' = (u3 - u ) / 3 .  Since 

implies t ( n )  = {(-n) for its Fourier modes. Moreover we 
have put n + m = E W. Then CmaoC,21 - and C,+,=y(u - 

the assertion follows from S ( € ,  II) = (i/8) Tr( Fp[Fp. D,][Fp ,  Dn]). 0 

7.4. A closer look on rhe charges 

With the two-cocycle S( . , . ), the Lie bracket in Vect( S I )  fB R can be written as 

previously mentioned algebraic cross section coincides with the continuous injection 
E Y ( { , O ) .  Since Vect(S') is equipped with the Frkhet topology inherited from 
the underlying space of C" functions, we may ask in what sense dQp(  D<)  depends 
on E .  Since D is unbounded it will he  more appropriate to consider the R-linear 
map ( H dQ,[D,)co, where (0 E domD,. 

Propmilion 7.3. Let 'p = @ P ( f l ) .  . . Q p ( f , , ) S l p ,  fj E Xsmooth for all 1 < i 6 n. 
Then the R-linear map ( I- d Q p (  DE)' is continuous. 

Proof. By R-linearity of ( c dQ,,(D<)'p it is sufficient to prove IldQp(D,s)pII -+ 
0 for any sequence of vector fields (t") converging to 0. Since 
[ d Q ~ ( D < ~ ) , @ p ( f ) l =  * p ( D ~ ~ f ) P w e  have 

[ ( t ,a ) , (7 ) ,P)1  = ( [ € , I I ] , ~ ( € , I I ) ) .  where q,€ E Vect(S') and a,@ ER. Then the 

m 

where M = n;=, l l f 3 / l ,  and where we have used I I @ P ( f ) l l  < i l f l l .  From the proof 
of proposition 4.6 it follows that E,, - 0 implies llD<,fjjll - 0. Moreover the last 
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term on the right-hand side is estimated with the help of (7.3). and 

IldQp(D<.)4I2 = $IIPD<(n- P)IIHs 
< i(t",t") by proposition 7.1 

Thus the last term also vanishes, since t,, - 0 then implies llt;llm -+ 0. 0 

For simplicity of notation let d Q p ( D t )  =: Q ( t ) .  Then proposition 7.3 implies 
that O( . ) p  is a continuous real linear functional on Vect(S') which has a unique 
complex linear extension to Vect( S')@ := Vect(S1)@II8C. By taking inner products, 
this functional is then pulled back to a distribution (O,,,pl.) := (v',O( .)v) on 
Vect(S'),, and we shall denote with 7 the subset of all distributions in Vect(S1); 
of the form (Ov,vpl.,). If E Vect(S');, then (@,,,I<) can be formally writ- 
ten as an integral wth  kernel Qv,?(u), and it might be useful to have an ex- 
plieit expression for the integral kernel. Let Q p ( u )  := CnEG 'Pp(e,)e-"u, then 
Q p ( f )  = S_f,"(du/2n)\~p(u)f(u).  By (7.3) we find 

(7.4) 

Here 
- 
d 

d u  
: Q p ( u ) - q p ( u )  : $0 

is the formal expression for the integral kernel. It is clear that this kernel is the 
matrix element of the normal ordered second quantized on-shell expression of the 
classical energy-momentum tensor density e,, = (i/Z)$,O*$+, and @(e) is the 
normal ordered integral over the Noether current O * , ( u ) [ * ( u ) .  Therefore we 
shall refer to the self-adjoint generator e(<) as the light cone components of the 
cnergymomentum tensor smeared with the vector field e ,  which obeys the relations 

- 
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8. The anomalous transformation law 

8.1. The adjoint action o f D i f + ( S 1 )  on Vect(S1)  @ R  

7he occurrence of a Schwinger term on the right-hand side of (7.5) gives rise to the 
anomalous transformation law of the energy-momentum tensor in two-dimensional 
conformal quantum field theory. Here this transformation law is determined by the 
adjoint action ( Q p ( U , ) , @ ( ( ) )  c Q p ( U r ) O ( ( ) Q p ( U r ) *  of (DiffT(S1))exc on 
its Lie algebra Lie(Diff;(S')),,,. Since the centre of (DiffT(S1))ext acts trivially 
on the latter, and Lie(Diff;(S'))ex, is isomorphic to Vect(S') @ R, this action 
factorizes to the adjoint action of Diff,(S') on Vect(S') @R,  which we denote by 
E. Fbr one-parameter subgroups (FItt] in Diff,(S'), Elpi[,,~,l is obtained by direct 
computation. 

Lemma 8.1. Let (,q E Vect(S'), a E R. Then (q ,a)  E Vect(S') @ R and 

Roo$ The adjoint action of Vect(S') on its central extension is determined by 
the Schwinger term, and we have zt(q.a) = ( a d t ( q ) , S ( ( , q ) ) .  Then with the 

convention a d  .- a d o . .  .oad (n-times) and a d y ) ( q )  := q , a d (  (7, a) := (q ,a ) ,  

it follows by induction that adt  (q) = (adl")(q),S((,adl"-')(~)). Inserting this 
identity in the expression for E we obtain 

4 0 )  I -(n) ,_ - 
-(n) 

Now J,' d s  S ( ( ,  AdIF,t,I(77)) can be rewritten in terms of a third-order non-linear 
differential operator A : DTfft(S1) - Cm(S',R) which is closely related to the 
Schwarzian derivative and whose kernel completely characterizes the universal cov- 
ering of the S U ( l , l ) / &  subgroup in Diff+(S') (Segal 1987). Let r E DTff+(S') 
then A : DTff+(S') - Cm(S',R) is defined by 

A ( r )  := - - - 

Note that by definition of A we have A ( r l o r 2 )  = ( r ;1 )2A(r , )or2+A(T2)  for any 
r , , r ? ~ D i f f + ( S ' ) .  Moreoverif[r] ~ S U ( l , l ) / Z : , w e o b s e r v e  A ( r ) = O , a n d w i t h  
(8.1) we are prepared CO pruve the following lemma. 

- 
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Lemma 8.2. Let (,q E V e c t ( S ' ) .  Then 

proof. We recall that if r E DTff+(S') and v E Vect(S') then AdrTl(q) = [T].(v) 
where [TI. is the push forward map for vector fields: ( [ r ] . (q))(a)(d/du)  = T' o 
~ - ~ ( u ) q o  r - l ( o ) ( d / d a ) .  For simplicity of notation we put FlCs =: T ~ .  Then 

With the substitution T - ~ ( U )  = 4 we obtain 

d d 
d u  d4 

d 0  = r i ( u ) d u ,  - = r l ,  o ~ ~ ( 4 ) -  =: Da 

where D, is a differential operator in 4. By definition we have rs = Fits such that 
E o ~ ~ ( 4 )  = i , (0)  and the right-hand side in this display reads 

Here we have replaced the derivatives T:, o r 8 , f B  o r8 and f'' o ra by 
~/T~,-T:/(T~)~ and ( 3 ( ~ 3 *  - (T~)T;)/(T:)~. This follows by differentiating the 
idcntity T - ~  o . , (U) = U with respect to U .  Finally (*) can be rewritten as a total 
derivative with respect to s: 
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By lemmas 8.1 and 8.2, the adjoint action of Diff,(S') on Vect(S')@R is given 
bY 

and, taking the discussion preceding lemma 8.1 into account, the anomalous transfor- 
mation law of the smeared energy-momentum tensor components under the adjoint 
action of (Diffy(Si))ext reads 

We recall that this action factorizes to an action of Diff,(S') on Lie(Diff;(S')),,,. 

8.2. Conneclions to geometry 

On the level of classical field theory, it is known that the light cone components 
(3ii[$i] of the energy-momentum tensor of the theory can be considered from 
a more geometrical point of view as elements in an affine hyperplane in the space 
of extended quadratic differentials on the circle (Segal 1981). Then these compo- 
nents transform according to the restriction of the inverse of the coadjoint action of 
Difft,(Si) on this hyperplane. In the following we shall show that these structures 
arise m a natural way within our algebraic treatment. To do so we must introduce 
some notation. 

Let 7;( SI) be the bundle of contravariant tensors of rank 2 over S' and let Q be 
the vector space of smooth sections Si - 7:( SI). We shall refer to Q as the space of 
quadratic differentials. Since du@du is a global frame in T;( SI), Q can be identified 
with Cw( S',Iw). Moreover any E Vect( S i )  induces via insertion a complex linear 
map L< : Q - Qi(S1) ,  where L( is given by ( L ~  o X)(u)du := [(u)X(u)du, 
X E Q and Q1(S i )  is the space of 1-forms over SI. Integration of L< o X over S' 
yields a real number, which defines a bilinear map ( .  1.  ) : Q x Vect( S')  -+ R 

( X , t )  - (WF) =: 1 L <  O X .  (8.3) 
S' 

This map extends canonically to a bilinear map Q x Vect(S'), + C, which is 
complex linear in the second entry by (Xl[+iq)  := ( X l t ) + i ( X l q ) ,  where < , q  are 
real. Since by definition ( X I .  ) is a bounded linear functional on Vect(S')@, such a 
quadratic differential determines uniquely a distribution in Vect( Si)& Hence there 
exists a linear injection j : Q - Vect(S');, j (X)  := ( X I . ) ,  which to identify via 
(8.3) the elemen6 X E Q to be identified with distributions j(X).  

The connection of our algebraic treatment with the geometic formulation is estab- 
lished by restricting attention to a special subset Tiooth of distributions in 7, which 
are real-valued when evaluated on real vector fields, and which correspond uniquely 
to C" functions on S'. To he more precise let be the subset of distributions 
( @ w , v l  .) in IT for which 'p' = 'p, ll'pll = 1, and which have smooth kernel 
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Then x:ooth f 0, since for 'p = ' l ' p ( e ~ , ) . . . ' € ' ~ ( e ~ ~ ) ~ ~ , ~ j  > 1 , 1  < j < IC, 
the kernel @,,(a) is a real-valued trigonometric polynomial and hence analytic. 
Moreover we observe that, by definition <:oath c j( Q )  and by injectivity of j ,  these 
(Ovpl. ) uniquely correspond to quadratic differentials on S' which we shall denote 
by e+,*. O,, like these are then given by 

The (DiffT(S'))ext action (8.2) on Lie(Diff;(S')),,,, which factorizes to the 
adjoint action of Difft(S') on Vect(S1) @ R  automatically induces a right action 
R : 7 x Diff,(S') - I on the family of distributions 7, which is obtained by 
inserting (8.2) into qp!. In fact for any [ r ]  in Diff t (S1)  we have 

and R[7,1 oRlr21 = R ~ r ~ o v 2 1  is easily verified. Moreover R leaves <Zooth invariant, 
since a (OVppl . )  in Ttooth has Ilqll = 1 with a smooth kernel O,,(o). But from the 
kit-hand side of (g.2) we conclude that (OQP(LI.) .pQp(Li , ) . , i  .)  has a smooth kernei 
r'(a) 'Ov, o T ( U )  - &A(T) (u )  which together with ~ ~ Q P ( U T ) * q ~ ~  = 1 implies R 
invariance of x~ooth. This right action has an illuminating geometrical interpretation. 

Propsilion 8.3. Let [ T I  E Difft(S'), let X E Q, and let RfT1 : '2 + Q be the affine 
map X ++ RlrIX := [ r ] ' X  - &A(.), where [TI' is the pull back of contravari- 
ant tensors under the diffeomorphism [ T I  and where A( T )  denotes the quadratic 
differential i a A ( r ) d a  8 d a  in Q which is associated with each r E DTff+(S'). 
Then 

R : Q x Difft(S1) - Q 
is an affine right action of Diff t (S ' )  on Q. Moreover let 6 denote the pre-image 
of %Zooth under the injection j : Q - Vect(S')$, then the following diagram 
commutes: 

Proof. By (7.8) we have for r1,r2 E DTff+(S') the identity A(r, o r2)  = 
( T ; ) ~ A ( T ~ )  o r2 + A ( r 2 ) ,  which together with [rl o 7'1' = [ T ~ ] '  o [rl]' implies 
Rlr,oT21 = o Rlrll. Thus R is an affine right action. Moreover let O,, E 6, 
then R[,]O,, can be written as f 7 ~ ( ( r ' ) ~ O , , o  r - $ A ( r ) ) ( a ) d o @ d o  by defi- 
nition of [T ] ' ,  and the expression inside the bracket is exactly the integral kernel of 

0 (OQp(u, ) . ,q , (u , ) . , l~  ). This proves proposition 8.3. 



Confomial field heory of the w Ising model 2519 

For the sake of completeness it should be mentioned that-following Segal 
(1981)-the affine right action of Diff+(S')  on p is obtained as follows. Let Q @ R  
be the real vector space of extended quadratic differentials containing the hyperplane 
QeB 1 := {(X, 1 )  : X E Q) as a closed subspace. Then Q is canonically identified by 
X c (X. 1) with Q@R. Moreover each (X,a)  acts on Vect(S')@R as a bounded 
reallinear functional((X,a)l.),where((X,a)((F,p)) := (XIC)+apfor al l (F ,p)  
in Vect(S')eBR. Hence QeIw lies in the dual of Vect(S')$R, and the adjoint action 
Ad of Diff+(S')  on Vect( S1)@I induces by transposition a right action zt on the 
dual, which is exactly the inverse of the coadjoint action. From the definition of Ad 

which then shows that Ad[,]'(X, 1) = (R[,]X, 1). 

I 

it follows that (G171t(,,1)~(~,~) = ( (X.I)IZ~~~(C,~))  = ( ( R ~ , ~ x , I ) I ( ~ , P ) ) ,  

Nore added h poof. I m e  special thanks lo Professor B Schroer for raising my attention to earlier 
rmrk on lhe mnstmction of the order-disorder wfiables with operator methods (Schroer and ltuouong 
1978). n e  global operator expansions in mnformally invariant OFT as trealed in Schroer n ol (1978). 
and lhe conformal blocks were not an invcntion of the 1980s. Their existence and decomposition theory 
has teen well known since 1974fl5 (resolving the causality paradox in No-dimensional conformal QFr by 
operator methods). However no non-trivial model (non-Abelian statistics) was known until the Coulomb 
represenlalions of Kadanoff, Nienkius, De Nies and BPZ. It would be interesting to recover in the previous 
approach the explicit n-point functions of the chiral d = 1/16 mmponents which have k e n  explicitly 
mmputed in Rehren and Schroer (1988) by holomorphic factorization of the doubled model. Moreover 
I am indebled to Professor H Grosse and to Professor K Fredenhagen for encouragemen1 and help. 
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