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On the conformal field theory of the two-dimensional Ising
model
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Institut fiir Theoretische Physik, Universitit Wien, Boltzmanngasse 5, A-1090 Wien,
Austria

Received 13 November 1991

Abstract. An explicit construction of a free and masscless Majorana quantum field
theory, which exists on a conformal superworld M is presented. Emphasis is placed
on the investigation of the action of an infinite-dimensional group G of spacetime
symmetries on AM. Starting with a one-particle theory, this action induces a strongly
continuous representation of Diff 7(S'} on the single-particle Hilbert space. After
second quantization the group of implementers turns out to be a non-trivial central
extension of Diff,';(Sl) by U(1), and a Schwinger term occurs, which gives rise 10
the anomatous transformation law of the energy-momentum tensor of the theory. This
transformation law is studied, and an interesting connection to geometry is established.

1. Introduction and summary of results

At its critical point the two-dimensional Ising model is described by a free masseless
Majorana field theory which possesses a symmetric and—due to scale invariance of
the underlying statistical model at T.—traceless canonical energy-momentum tensor
©#v, For an early and physically clearcut approach which uses a doubled version of
the Ising model based on a complex Dirac field, and which allows a simple description
of the scale invariant limit see Schroer and Truong (1978). The Schwinger functions
of this free field theory obey the conformal Ward identities which implies invariance
under the Euclidean conforma! group in two dimensions (Saint Aubin 1987, Miwa
1984, O'Carrol and Schor 1982). For this reason it is natural to regard the Majorana
field as an object existing on the so-called conforma! superworld M, which is nothing
but the universal covering space of compactified Minkowski space M*< (Mack 1987).
Taking this as a motivation we present in this paper an explicit and mathematically
rigorous construction of such a free masseless Majorana field theory on M which—
when second quantized-—exactly reproduces the Majorana field theory of the two-
dimensional Ising model. Although emphasis is laid upon an algebraic treatment, it
turns out that there is a very interesting interplay between geometrical and functional
analytical methods in this approach.

The most intriguing fact about (1 + 1)-dimensional conformal kinematics is the
existence of an infinite-dimensional Fréchet Lie group G which acts as a group of
spacetime symmetries on M and which contains the Minkowskian conformal group
as a subgroup (Schomerus and Mack 1990, Schroer 1988). We shall take this classical
group action, which is briefly sketched in section 2, as a starting point. In section 3
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the classical field theory of a two-component free and masseless Majorana field is
introduced on M within a Lagrangian formulation. Classical field configurations cor-
respond to smooth sections of a vector bundle £ over M. Due to factorization of
the classical theory in light cone coordinates in a theory of right and left movers,
the chiral components of the Majorana field, which are solutions of the zero mass
Dirac equation obeying antiperiodic boundary conditions at ‘infinity’, can be treated
independently. They turn out to be in one-to-one correspondence to smooth sections
of the Mobius strip. In section 4 this one-to-one correspondence is used to extract
a complex single-particle Hilbert space H together with an antilinear involution C
which implements the reality condition of the Majorana field configurations on X.
Moreover a unitary representation of the twofold covering Diff(S') of the con-
nected component Diff  (S?) of the diffeomorphism group of the circle is found
which commutes with C. Strong continuity of this representation is proved, and a
Lie algebra of self-adjoint differential operators is obtained, which is interpreted as
the Lie algebra of observables of the single-particle theory. Each vector ficld £ in
Vect(S!) is associated with an observable D,, such that the mapping { — D, is
a Lie algebra homomorphism. The ditferential operator which corresponds to the
constant vector field is identified with the conformal Hamiltonian denoted by D,
which has an entirely discrete spectrum Z + 1. Its spectral projection P on the pos-
itive energy subspace of D, satisfies CP = (1 — P)C, and with this single-particle
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Mackey (1963} in section 5, is straightforward. Strictly speaking associated with the
pair (M, C) there is a uniquely defined self-dual C* algebra %A(H, C), on which the
previously mentioned group acts via Bogoliubov automorphisms. This action is con-
tinuous provided the automorphism group carries the strong operator topology. The
orthogonal projection P gives rise to an SU(1, 1)-invariant Fock state over A(H, C),
which implies that this symmetry is unitarily implemented in the GNS representation.
In section 6 the general implementation problem is discussed, and the necessary
and sufficient Hilbert—-Schmidt condition for implementation of Bogoliubov automor-
phisms on Fock space is proved for all automorphisms under consideration. The so
obtained group of implementers is a central extension of Diff}(S1) by U(1), which
acts reducibly on Fock space. Restriction of this group to the even-particle subspace
F,,(PH) yields a central extension of Diff (S}, acting irreducibly on F,( PH).
The smaliest C* algebra which is generated by these unitaries on B{F, (PH)) is
then identified with the algebra O of chiral observables. It is interesting to see that
O can be obtained by an abstract construction similar to that of the Weyl algebra.
Recently Schroer has pointed out that the physical meaning of those diffeomorphisms
which do not come from a Mdbius transformation is connected with the Tomita-
Takesaki theory for non-connected intervals. For connected intervals one obtains the
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Whereas implementation of single Bogoliubov automorphisms is dealt with in
section 6, unplementanon of one-parameter groups requires additional work, and
in section 7 it is proved that an arbitrary one-parameter group {e'?¢' : t € R}
in Diff7($?) admits a lift to a strongly continuous one-parameter group {e'®(¢)* :
t € R} on Fock space. The Lie algebra of the self-adjoint generators {©(£) : £ €
Vect(S!)} yields to a non-trivial central extension of the Lie algebra of vector fields
on the circle, and its complexification contains the Virasoro algebra as a subalgebra.
The value of ¢ = % of the conformal charge can be casily read from the explicit form
of the Schwinger term. Moreover it turns out that for ¢, ¢ in a dense domain in Fock
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space, £ — (@', @(£)¢) is a continuous linear functional, which demonstrates that the
energy-momentum tensor in the second quantized theory is indeed an operator-valued
distribution. In section 8 the anomalous transformation law of the energy-momentum
tensor is studied in detail. For this purpose the adjoint action of Diff  (5') on the
central extension of Vect(S') is computed, and a nonlinear third-order differential
operator, A on Diff +(.5‘1), which is closely related to the Schwarzian derivative, is
obtained. Finally the connection with a more geometrical point of view found in
Segal (1981) is established.

2. Kinematics

21. General considerations

A detailed investigation of analytic continuation in the case of conformal symme-
tries has revealed the fact that whenever the Schwinger functions of an underlying
Wightman field theory exhibit invariance under infinitesimal transformations of the
Euclidean conformal group SO(d + 1, 1), its Wightman functions admit analytic con-
tinuation to a domain of holomorphy which has as a real boundary an infinite sheeted
covering space M ~ R x S%~! of compactified Minkowski space M® (Liischer and
Mack 1975, Mack 1987). Because of this A is called the conformal superworld. In
addition there is an action of an infinite sheeted covering group of the conformal
group SO(d,2)/Z, on M, which respects the causal ordering. Special conformal
transformations are well defined and Einstein causality is restored for the price that
M contains an infinite number of identical copies of Minkowski spaces, which is
described in picturesque language as an ‘infinite staircase of heavens and hells’. Thus
one s led to the conclusion that a d-dimensional conformal quantum ficld theory
exists on A rather than on Minkowski space.

In this paper we start with the (1 + 1)-dimensional Minkowski space M = R?
with the standard metric dz° ® dz® — dz! ® da!. Then M has compactification M,
which is covered by M = R x §%, It is appropriate to think of A as the submanifold

M= {(c%cosel,sino!)| 6® €R, o' € (-7, 7]} CR® (2.1)
with coordinates (¢, a!). A global causal structure on M is induced by the Lorenz
mettic ¢ = do®® do® —do! @ do!l. It coincides with the causal structure on M
inherited from the pre-image of M under the surjection M — M which is defined
by (0% cos a!,sin o) — (at(e*),z"(o7)) € M, where

et (o¥) :=tan o*/2 (2.2

and where z* := 2%+ z! and o% := o + o! denote light cone coordinates on M
and on M respectively.

22, An infinite-dimensional group of spacetime symmelries

The case d = 2 is different from the higher dimensional case, since here the infinite-
dimensional Fréchet nuclear Lie group

g = (Diff,(S") x Diff, (5"))/Z 23)
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acts as a group of spacetime symmetries on M (Schromerus and Mack 1990). To have
a closer look at this action we recall that Diff + (8"} is the universal covering group of
the orientation-preserving diffeomorphisms of the circle. Its elements can be identified
with smooth functions 7 : R ~— R, obeying 7(a + 27) = 7(o) + 27 and 7' > 0.
With this identification 2 smooth action of Diff +(81) x Diff +(8') on M is defined
in coordinates by o* — 7t (ot), where (r+,77) € Diff (Sl) x Diff +(S8'). From
(2.1) it follows that this action factorizes to an action of G on M. The kernel K of this
factorization is isomorphic to Z and consists of all (74, 7~) with 7*(o%) = ot +
2mk* and k* +k~ = 0. Elements in G are denoted by {v+, 7=], which indicates that
[1-+ 7] is the image of (7%, 7~) under the surjective homomorphism Di Diff +(8H x
D:ff+(.5'1) — G. Let 7 +—— [7] be the covering homomorphism Diff +(8Y) —

Diff ,(S'), which is given by [r](e'?) := ¢!7(?) provided we identify S* w1th {z €
C: |z| = 1}, and let

® : G — Diff  (8%) x Diff  (5*) 2.4)
be the homomorphism defined by ®([+*,+~}) := ([v*],[77]), then ker ® = (Z x

Z)/K coincides with the centre Z of G. It is illustrative to express these relations in
terms of a commutative diagram:

K — ZxZ — z
I o !
K — Diff ((S!) x Diff .(S1) — G (2.5)
l 1@
Diff . (S') x Diff ,(5') == Diff ,(S5) x Diff .(S).

2.3. The conformal group

The six-dimensional subgroup (PSL(2,R) x IS?ST,(2,JR))/Z7. C G is an infinite sheeted
covering group of the conformal group SO(2,2)/Z, in two dimensions. Since
PSL(2,R) ~ SU(1,1)/Z, by Cayley transform, since PSL(2,R) x PSL(2,R) ~
$0O(2,2)/Z, and since elements [+, 7~] in (PSL(2,R) x PSL(2,R))/Z are char-
acterized by ®([vF,77]) := ([7*],{7"]), where

[7](e'7) = ”“’)=%Z%§ for (% ﬁ)esuu 1) (26)

we have exactness of
Z — (PSL(2,R) x PSL(2,R))/Z — S0O(2,2)/Z,. X))

The conformal group plays a special role not only because its generators have a
direct relationship to physical obscrvable quantities, but also because it turns out
to be exactly the invariance group of the ground statc of the second quantized
free field theory which we shall introduce in the next section. In order to obtain

the fundamental fields of the (PSL(2,R) x ﬁﬁ,(z,m))/z action on M, we ob-
serve that (2.7) implies the existence of a unique lift of the one-parameter group
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(exptX+,exptX~) to (PSL(2,R) x PSL(2,R))/Z, where X = (X+,X") de-
notes a generator in su(1,1) ®su(l1,1) =~ so0(2,2). Since Lie((l;'é_f,(z,]R) X
PSL(2,R))/Z) = Lie(PSL(2, R) x PSL(2,R)) C Lie(Diff ,(S') x Diff (51)) =
Lie(Diff , (S*) x Diff | (S*)) = Vect(S')® Vect(.S*) the lift of the previously men-
tioned one-parameter group uniquely determines vector fields (y+,(x- ), which we
shall identify with smooth real-valued 2= periodic functions on R. Then the flow
t — F1¢¥ of {y is a one-parameter group in Diff +(S) and, by construction, we
have

Q([Flcf-'- H FIC;(— ]) = (Lexp tX+ Lexp txX- ) (2‘8)

where @ has been defined in (2.4). Here A — L, is the homomorphism SU(1,1) —
Diff  (S'), which has kernel {1l,~1}, and which is defined for A = (g g) by
L,(e) := (e + B8)/(Bel” + &) as in (2.6). Differentiation of the action of
the one-parameter group ¢ — [FIC;“ *,Flcf 7] of diffeomorphisms yields the funda-
mental field ¢x on TM. Note that ¢y =g x4+ y-y = Sx+ +x-. Since M = Rx 5!
is a product of one-dimensional manifolds it is parallelizable, and TM has a global
frame {3,,8;}. The global frame of light cone vector fields {8,,8_} is then ob-
tained by 8, := 1(8,+8,), and it is appropriate to re-express the fundamental fields
of the action of the covering of the conformal group in terms of these fields. As can
easily be seen

sxx = cta, 2.9)

where ¢t : M — R are functions that depend only on one light cone coordinate,
such that ¢*/o¥ = 0. If ¢* = constant, then c*8, + c~3_ generates the Abelian

subgroup (U(1) x T(1))/Z of translations 0% — a* + c*, which is a covering
group of the maximal torus T? ~ U(1) x U(1) in SO(2,2)/Z,. By (2.2) we observe
that the action of {(U(1) x U(1))/Z does not project to spacetime translations on
Minkowski space. Nevertheless, as mentioned before, a conformally invariant and
hence masseless quantum field theory exists on M, and therefore we shall identify
the generators of the unitary representation of (ﬁ-fT) X I’J_(‘_’l)) /Z on the Hilbert
space of physical states with the energy—momentum observables of the theory. Then
the vanishing mass of the particles implies that the most natural kinematical descrip-
tion is given in terms of light cone coordinates, and for that reason we shall focus
our attention on the fundamental fields &, and on the one-parameter groups they
generate.

2.4. Arbitrary one-parameter groups and the compact picture

Arbitrary one-parameter groups in G are generated by vector fields (£+,£67) €
Vect(S1) @ Vect(S!). They are of the form ¢ — [FI§, ,FIE] for ¢t € R. Note
that by compactness of S' any £ € Vect(S') is complete, and the corresponding
one-parameter group of orientation-preserving diffcomorphisms of the circle has a
unique lift to its universal covering group ﬁﬂ(S‘ ). It is clear that £ — F1%| yields
the exponential map exp : Vect(S!) — Iﬁ?ﬁ(Sl ). However care has to be taken,
when working with the exponential, since exp is neither locally surjective nor globally
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injective (Pressley and Segal 1986) and its image generates a nowhere dense subgroup
in Diff (5"} (Goodman and Wallach 1984).
A pair (p,,p_) of submersions

py: M — 8 (2.10)

is defined by p,((0 cosol,sinal)) := e”*. In the following we shall tacitly
identify the manifold S' with the complex unit circle. Moreover we shall refer to
el?® = z%(o*) as compact picture coordinates. By definition of p, we observe

prolrt v =[r*]epy T @i

where [r+,77] and [r¥] are regarded as diffeomorphisms acting on M and on S!
respectively. As a consequence the fundamental fields <y+ of the (PSL(2,R) x
PSL(2,R))/Z action and the SU(1,1)/Z, action on S! are p,. -related

Tpyocxs = (xz0py. (2.12)

This terminates our brief overview of conformal kinematics in 1 + 1 dimensions.

3. The free Majorana field

3.1. A Lagrangian scenario

We introduce the classical field theory of a single massless fermionic field ¥ on
(M, g} which has Lagrangian

—

= _Uy*8 V. (3.1
Here 4% = (2 1), 4* = (°,},) and 4% = 4°~! = (') is & real representation of the
~-matrices in 1+ 1 dimensions obeying {+*, "} = 2n** where n** = diag{1l,—-1).
The fermionic field ¥ is a smooth section of the trivial complex bundle At x €2, and
its components (¥*) of ¥ are chosen such that v°v, = -, and v*¢_ = vy_.
Moreover ¥ := (CW)'~%, where € : M x C* — M x C? is a fibre-preserving map
which acts on each fibre as an antilinear involution, and which is given by
Lsinol,g7,q")) := (6% cosal,sin o, el =a )T ile+e )=y,

(3.2)

C((e% cosa

Here the bar over g% denotes complex conjugation in C. Integration of (3.1) over
M yields the action

S[W] = fM %W«,uéﬁw. (3.3)

The functional ¥ — S[¥] is minimized by ficld configurations W which satisfy the
zero mass Dirac equation

¥48,¥ =0

(6#-\17)7“ = 0.
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Using the equations of motion, the on-shell expression of the energy-momentum
tensor reads

R (¥) = %W-yﬂé . (3.4)

Neutral particles are described by a Majorana field which is obtained by imposing the
reality condition Co W = ¥ on field configurations satisfying (3.4). This implies that
¥ = ( *+) becomes real in the sense of the bundle map C. Since the components of
the energy-momentum tensor correspond in principle to physical observable quanti-
ties, the densities must be periodic in light cone coordinates which forces the spinor
fields to be either periodic or antiperiodic in o*. Here periodic (= Ramond) and
antiperiodic (= Neuveu-Schwarz) boundary conditions are closely related to the two
real line bundle structures on M. We shall focus our attention on the latter, since
they will lead naturally to the correlation functions of the conformal field theory of
the two-dimensional Ising model (McCoy and Wu 1973).

3.2, The geometric setting

In order to establish a one-to-one correspondence between the chiral components
of the Majorana field configurations and smooth sections in the Mdbius strip, we
observe that the reality condition Co W = U suggests regarding the Majorana field as
a smooth section ¥ : M — £, where £ is the real sub-bundle in M x C? with fibre
IR?, which is left invariant by C. Then points in £ can be parametrized by

(o ', 7,77 ) — (0%, cos ol sin o, e =0 ")/ 2- _i("o""'l)/?r"’) (3.6)

where r* € R. For I, := (—n,n), I, := (0,2) we define open sets U; C&as
the image of I; x R? under the map (3.6). According to that u; : U; — I, x R?
is defined as the inverse of (3.6). Then (U;,u;}ieqy1,9y 15 an atlas for 6‘ Moreover
U, n U, is the disjoint union of two open sets V, such that u,(V, )} = u,(V,) =

(0 ) x R?, u (V.) = (-7,0) x R? and u,(V_) = (7,2%) x IR{2 From this and
from (3.6) the transition functions ®F, : V, — GL(2,R) can be computed. They
turn out to be locally constant with ®F, = 41, and we have the following propaosition.

Proposition 3.1. The real vector bundle £ — M over M is the Withney sum £ =
p_M @ pL M of the pullback pi™M of the Mdébius strip 9 induced by the pair
(M, py ), where py is the submersion defined in (2.10).

Proof. For simplicity of notation we shall identify the total space of the Mébius strip
with the teal sub-bundle

M= {(e,e7*) : (0,7) € (-7, 7] x R}
in §' x C. Then by definition of the submersion p, we have
piM = {(c% cos ol sinol. e —i(e®%at)/2 r¥): (e 0!, 7)€ (=, 7] x R}

and because of (3.6), £ = p_ M & p M (ollows. O
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Note that by proposition 3.1

M & m
t t 3.7
M Bos

commutes. Moreover proposition 3.1 allows the complete characterization of the
Majorana field configurations which obey NS boundary conditions. We have

Proposition 3.2. A classical Majorana field configuration obeying Ns boundary condi-
tions is a smooth section ¥ : M — £ such that its chiral components ¥ correspond
uniquely to smooth sections f, : S' — M via 7 09y = f, op,.

Proof. We observe that for each smooth function ¢ : R — R with (o + 27k} =
(=) f(o), k € Z, there is an associated smooth section f : ST — 9 with f(e9) =
(ei?,e7*/2p(0)). This correspondence is one to one, and given f, and f_ we
define

(*) ¥((c° cosal,sinat))

0

:= (%, cos ol,sin a'l,e‘i"_”go_(a“),e_i"+/2cp+(cr‘*‘))

= (o, cos o, sin crl,r,b_,tj)+).

Then CoW = ¥, 7, 01y = f, op,, and by construction ¥ solves (3.4), which is
equivalent to ¥_/o* = ¢ /o~ = 0 in coordinates. Conversely any Majorana field
configuration satisfying the NS boundary conditions can be written in the form (x)
with uniquely defined functions ¢, . O

4. Single-particle theory

4.1. Chiral decomposition and the construction of a single-particle Hilbert space

The fact that Majorana field configurations decompose into two independent chi-
ral field configurations i, which are in one-to-one correspondence with sections
fy+ S' — M together with the factorization of the action of the classical confor-

mal group (ﬁf +(81) x Diff +(8'))/Z in light cone coordinates allows fermionic
theory to be decomposed into a product of two chiral parts which can be treated
independently.

In the following the suffix + will be dropped and we restrict attention to only
one chiral component y» of ¥ and to only one component of the energy-momentum
tensor ©#¥. Note also that we drop the suffix + from the periodic coordinate o
which parametrizes the unit circle in the compact picture.

The M@bius strip, which has been introduced in the proof of proposition 3.1 is
obtained as the real sub-bundle of S? x C which is left invariant by the bundle map

C:8 xC—8'xC “.1)
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given by C((el?, q)) := (e?,e~?g). By construction the maps C and C are related
by mpo0C = Com,. Let T(S?,S' x C) be the complex vector space of smooth
sections f : §1 — S' x C, then C induces an antilinear involution on I'(S!, S x C)
which we denote by abuse of language with C, and which is defined by
f=Cf:=Cof 4.2)
Then the real subspace 1(id + C)T(S?, 8! x C) coincides with '( S, M), the real
vector space of smooth sections f : S' — 9R. The sesquilinear standard inner
product on € induces a fibre metric (+,+) : T'(S', 8 x C) x ['(81,8' x C) —
Ce°( 81, L) which is defined by ( f,, fo), = f,(¢)f,(o). Then multiplication of the
C>=(8',C)-function o — 37 (fy, f;), with the 1-form do on the circle yields the
1-form In{f,f,)do which can be integrated over S'. The factor 3™ has been
introduced for later convenience. Thus we have obtained a non-degenerate positive
definite sesquilinear form {-,-) on I'(S*, S x C) which is given explicitly by

findo— (i d) = [ 3= ) do
s @.3)

It

Tl ——
| S27@ne).
Let H be the Hilbert space completion of I'(S!, S' x C), then H ~ L?(S!,de), and
C extends to an antilinear involution on ‘N which satisfies

(ChHCha) = {fos 1) (4.4)

Naturally Re(%) = (14 C)H is just the real Hilbert space completion of I'( S*,M).
By taking proposition 3.2 into account, we shall refer to Re(?) as the real Hilbert
space of chiral field configurations, and from this it is clear that X can be regarded
as the single-particle Hilbert space of left moving or right moving Majorana fermions
respectively. H contains dense linear subspaces whose elements differ in their analytic
properties and which will be of interest in what follows. Let {e,.},,cz,e,,(0) :=
e'™7 be the complete orthonormal system in M, and let for cach n € N, M, :=
Span{e, : —n € k € n ~ 1} be the finite-dimensional subspace of trigonometric
polynomials of degree less than n, then

Hpo] = U Ha (4.5)
neN

is dense in H by the Stone-Weicrstrass theorem. Moreover H, is contained in the
dense linear subspace M, of real analytic elements, where real analyticity refers to
o coordinates. Equivalently f € H,, if and only if f(—ilog z) admits a convergent
Laurent expansion in some annulus D> S'. Finally we denote by M, .., the dense
linear subspace of complex-valued C* functions on the circle. Then the inclusions
HD Hamooth 2 Han D alol are valid.

4.2, A unitary action of the group of spacetime syrmimetries on the single-particle Hitbert
space

Next we look for an action of Diff +{S") on H which is restricted to an orthogonal
action on Re{(#). In principle the requirement of unitarity (respectively orthogonality
on Re(H)) can be motivated in the Lagrangian formalism but we will not pursue this

line of reasoning. Instead we give an expression for a twisted action of Diff +(8h)
oh ‘H which differs from the one given in Pressley and Segal (1986).
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Definition 4.1. Let 7 € Diff (S') then for any f € M a linear operator U, on H is
defined by :

(U, (o) = T =W2 f o =15} [(r=1) (o)

H -1 A . - N
The phase factor e/2("” (9)-7} which establishes the I/_-invariance of Re(H)
can be interpreted as a l-cocycle 7 — /207" -ids1) on Diff (S!) with values in

C*(S',T), where T is the one-dimensional torus (Bien 1988).

Proposition 4.2. Let 7 — U, given as in definition 4.1 and let = be the generator
of the centre {Z™ : n € Z} in Diff (S1), then

U : Diff .(§") — B(H)

is a unitary representation of Diff +(S8!) which commutes with C and which has
ker U = {Z2* : k € Z}.

Proof. The verification of the representation property is straightforward. To see
kerl/ = {Z% : k ¢ 7}, we observe that if r(g) = ¢ + a then (U_f)(o) =

e =ewas LV A -

e"4/2 x f(o ~ a) and for a =27 we have r = Z with U-f = - f. Smce Uisa
homomorphism the centre {=" : n € Z} is mapped onto the group {1,—1}, which
implies ker U = {=" : n € Z}/Z,. Unitarity follows from definition 4.1 together
with (4.3), and using (Cf){¢) = e™'? f(a), we obtain (CU, )} o) = (U,C)(o),
which proves the first part of the assertion. {

4.3. Topological preliminaries

In the sequel we will denote the twofold covering ﬁf+(51)/ ker U of Diff _(S!)
by Diff7(S'). Note that Uz = —1 reflects NS boundary conditions or equivalently
the non- tr1v1al bundle structure of 9. In order to investigate the continuity prop-
erties of U, when B(H) is given the norm and the strong operator topology, we
recall that '1:)"17ﬁ' +(8') i5 a simple Fréchet nuciear Lie proup modelied on the Lie
algebra Vect(S') of C* vector fields on the circle (Pressley and Segal 1986). Since
Vect(S!) is a free module over the ring C> (5!, R) with basis d/de, vector fields
may be identified with elements in C*°(S',R). The topology on Diff .(S') is the
initial topology induced from the injection 5?15[‘+(S‘) — C®(S!,R); 7 +— 7, where
#:= 7(o) — o. This implies that convergence of a net of diffcomorphisms (7,),¢ 4
to a diffeomorphism 7 is equivalent to uniform convergence 74 ~ 7™, — 0 of
all derjvatives ré“) = d"r, /do™. Here A is a directed set, and since the Fréchet
topology is metrizable, it is enough to consider the case A = N. The topology
on Diff _($') and on Diff7(S') is the quotiend topology induced by the covering
homomorphism.

4.4. Strong continuity of the representation U

If ©B('4) carries norm topology, then 7 w» U, is continuous provided Diff7(S')
has discrete topology (Pressley and Segal 1986). This follows from the observation
that for each diffeomorphism [7] € Diff _(S') # idg, there exists an open interval
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I C §' which is sent into the interior of its complement by [r]. Choosing a function
J in H which has support in I then implies (U, f, f) = 0, from which we conclude
WU, =1l 2 v2. If [r] = idg,, but 7 ¢ ker U then U, = -1 and ||U, — 1| = 2.
Hence |U,, —U. || > V2 whenever ryor; ! ¢ ker U. on physical grounds this result
is not surpnsmg, since it is well known from elementary quantum mechanics that, in
general, kinematical symmetries cannot be implemented norm continuously on Hilbert
space. Therfore the strong operator topology on B(%) seems more appropriate and
in fact it turns out that in this case r — U_ is continuous. To prove this assertion we
need the following lemma.

Lemma 43. Let (1,),ey.7 € Diff (S!) with 7, — . Then the sequence
(U, )aen Of unitaries converges strongly to U,.

Proof. Since taking the inverse in Diff ,{S?) is continuous, we have r,' — r~1
which in turn implies ||77' — 7=, — 0 and ||(7; ") = (" ')'|lc — 0. For all

m,n € N we observe
/” do -im+ro
_x 27

( i(n+1 }Tkl(d)\/mmel(n-f- )r"(a)\/(—TTr)(—a)

. .
= :(%).

But then lim,_ (e, (U, —U,)e,} = 0, since by continuity of the square root
: RY —— R* and by equicontinuity of continuous functions on compact sets,
lre! = 7 Yo — 0 and [}(77') — (r~!Y|l, — O imply that ()} can be made
arbitrarily small. Weak convergence U/ — U_ follows by an /3 argument from the
fact that any f € H can be approx1mated by an element }7_, (e, ,f)emj € Hpobr
since H,, is dense in M. This finishes the proof, since a net ofl unitaries which
converges weakly always converges strongly provided the limiting operator is unitary.
O

I(em’(Un‘ - UT)en)] =

. 1. - . 1. -~
elnt5)7; o el(n+3)7 '

(r-1y

(T—I)l’

Taking lemma 4.3 into account, the continuity of the covering homomorphism
+(8') — Diff7(S") together with ker U = {Z?* : k € Z} and lemma 4.2 imply

iff
tha f Nowring fhpr\rpm
L9815 1LV YY llé Lilwiriviill.

Al

Theorem 44. U : Diff7(5') — B(H) is a faithful strongly continuous unitary
reprcsemanon of the twofo]d covering group of Diff  (S!) into the unitary operators
in B{*) which commute with the antilinear involution C on H.

4.5. A Lie uigebra of differential operators
Next we consider one-parameter subgroups. If £ € Vect(S'), then (Fl )zem is a one-
parameter group of diffeomorphisms and by theorem 4.3 UFle is a strongly continuous

one-parameter group in B{H}, which—by Stones’ theorem—must be generated by a
self-adjoint densely defined operator D,. In fact
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Proposition 45. To each vector field £ € Vect(S') there corresponds a densely
defined self-adjoint operator D, such that Up = ¢'P¢*, and

fod 1.\ 1
Dg=1(fa7+§f)—§f

is essentially self-adjoint on the common U invariant domain H

smooth*

Proof. Going back to definition 4.1 one sees at a glance that U H, .1 € Homooth
Then any unitary one-parameter group Upye, s fixed without ambiguity by matrix

elements on M, .., Which is then a domain of essential self-adjointness for the
generator. If we fix f e X

d
dt

smooth?

(&2 f) (o) = 57| k2 p o FIE (o) (FIEL,) (o)

i=0 t=0

exists and equals —£ f'—1¢'f—(i/2)£ f. T see this put (e'P¢! f)(o) =: q,(o). Then
(a,(0) — qu(@))/t = ¢}y, () by the mean value theorem, where 0 < A(o) < 1
and by continuity propertics of F1%, and f we have ||q. — ¢}||., — 0 as ¢ — 0. Hence
2

. Upe f-f . T do
lim | =~ 6P| =tim [ FHlahn () - e =0. 0
aNoj I, PN0J-n 27

It is clear that £ — D, is a Lie algebra homomorphism, and i[D,, D, ] = Dy, ,
is easily verified on H, .. Note that here [£,n] = —(&n' — €') denotes the
Lie bracket in the Lie algebra of the diffeomorphism group. We recall that this
bracket is minus the Lie bracket of vector fields. For the investigation of topological
properties of this map we switch to the resolvent (D, — z)~! in order to work
with bounded operators only. We recall that a sequence of self-adjoint operators
is said to converge in the strong resolvent sense if their resolvents converge in the
strong operator topology. A sufficient condition for strong resolvent convergence is
then given by pointwise convergence of the sequence of self-adjoints on a common
domain of essential self-adjointness (Weidman 1980).

Proposition 4.6. The map Vect(S') — B(H) given by £ v (D, — z)~! is strongly
continuous for each z € C\ R.

Proof. By linearity of £ — D, it is enough to verify {, — 0= D, —0o0nH, .

But this follows from

wm e [Tdelo e TN

1, Hlz = j e |En(0J klf - 51} {e)+ ;tn(ff)fto’)]
<NEallZoer () + Rl () + 2ll€nlloollEnlles €a(S)

where ¢, { f) are real positive constants depending on f. 0

2

Note that the preceding proofs rely heavily on the smoothness of the objects
involved. This allows, in principle, due to U invariance of Re{H, o), U, 10 be
reformulated in an entirely geometrical context as C* map I'(S', M) — (ST, M),
We shall, however, stick to the algebraic point of view which is the appropriate one
when second quantization is concerned.
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4.6. The compact picture Hamiltonian and its positive energy spectral projection

In fact the last ingredient we need for the second quantization process is the spectral
projection P of the compact picture Hamiltonian on the positive energy subspace in
M. Since the light cone fields 8, are p, related to d/do by (2.12), we shall identify
Dgy4, With the compact picture Hamiltonian. For ease of notation we denote the
latter by D,, and with Dy = i(8/80) — 1 it follows that Spec(D,) = Z - § is
entirely discrete, since D, has non-degenerate eigenvalues —n — % corresponding to
the eigenvectors e,,, which form a total set in H. The positive energy subspace is
then obtained as the closure of Span{e,, : m < 0} and the corresponding spectral
projection P satisfies

CP=(1- P)C (4.6)

since CD, = -D,C. P induces a polarization PH & (1 — P)H on M such that by
(3.13) C acts as an antilinear isometry from PH to (1 — P)H and vice versa. In o
respective z-coordinates 1 — P can be written as an integral operator with singular
kernel K which wurns out to be the chiral contribution of the two-point function of
the free fermionic field theory.

Proposition 4.7. Let (1 - P)f)(o) = [7, do’ K(,0") f(o"). Then
gile’—i0)

2K (0,0") = -

Proof. It is sufficient to verify

lim T dof ei(a'_ie) eina' _ ]im(**) _ eln? for n # 0
eNOJ_p 2w ello’—i) _elo AN o for n < 0.
But this follows from
(= f fremm_ e ez
|z]=ec 27 z —e'? 0 ifn<0
by Cauchy’s intepral formula, |

5. Quasifree second quantization

5.1. The algebraic level

Each pair (H,C), where M is a separable Hilbert space, and C : H — H is an
antilinear involution, has associated with it a self-dual CAR algebra 2(H, C) which is
generated from the range of a continuous C-linear map W : H — (%, C), obeying
V() = W(CHUF) U S) + V(DY) = (fi, )1 and [[B(AIF < (F, 1)
(Araki 1987). As an UHF algebra, 2(H,C) is obtained as an inductive limit of
an ascending net of [,, factors U(H,,C,) =~ B(C*"). Here C,, := C | H,,
Hy =Span{ey: ~n gk < n -1} A y(H,C) 1= UpenU(H,, C, ) denotes the
norm dense subalgebra spanned by all finite monomials ¥ (e, }...¥(e,,). The uni-
tary action of Diff +(S') on the one-particle Hilbert space % can now be lifted
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to an action on A(H,C). Let Bog(H,C) be the subgroup of all unitaries in
B(H) which commute with C, then for each U the map ¥(f) — W(Uf) ex-
tends to the Bogoliubov automorphism oy € Aut{A(H,C)). By theorem 4.4 we
have U_ € Bog(H,C) for each r € ﬁlﬁ‘+($ ), and T — o, := oy, is a faith-
ful representation of Diff7(S!) into the auwtomorphism group Aut(ﬁl(’H C)). Let
B(U(H, C)) be the Banach algebra of all bounded linear operators on the Banach
space A(H,C), equipped with the strong operator topology, then Aut(2%(H,C))
is a subgroup in B(A(M,C)) which is given the initial topology from the imbed-
ding Aut(A(H, C)) — B(A(H,C)). As a consequence of the boundedness of
U :H — U(H,C) together with lemma 4.3 and proposition 4.5 we obtain the fol-
lowing proposition.

Proposition 5.1.

(i) The injective homomorphism Diff7(S!')r — «, is continuous.

(ii) T each vector field £ € Vect(S') there corresponds a closed
symmetric derivation 6. on dom(4;). Moreover [Yecveeyisyy dom(ée) D
Span{W(f})... ¥(f):n €N, f; € H oo} I @ cOmmon norm dense a-invariant
*-subalgebra in A(H, C), on which

5 (W(£). . W(£)) = S W(AL) . WGDS) . W(F)

is valid,

Proof. (i) Let (7,)pen, 7 € Diff (SY) with 7, — . We observe o, (¥(f)) —
a (¥(f)) in norm, since fla, (U(f)) — a (W()I = €U, F - U Nl €
U, f=U,f|l. Nowlet X := H;‘:l W{ f;) be an arbitrary monomial in A,,,(¥, C),

then we find
k k
a,, (H w,-)) -a, (H ‘I’(I,-))
=1 i=1

where M := || ;]! TI5-, §l £ll, which implies o, (X) — o, (X). Since |jo, || = 1,
pomtmse convergence of the net (o, ),y OB a]l of A(H,C) follows from an ¢/3
argument, and by definition of the topology in Aut(2(H,C)) the map 7 — «, is
continuous.

(ii) With (i) we conclude that ¢ — o is @ strongly continuous one-parameter
group in B(A(H, C)), which possesses a densely defined unbounded closed generator

&. (Miwa 1984y Unboundedness of the latter follows from the fact that 7 +— o 18

Ve U¥IIWVA 1705 ) VhULDulinLUiioes Vi LI 4 L 1 Ei ¥

not uniformly continuous. From U invariance of H, ..., we deduce that the norm
dense «-subalgebra generated by the linear span of all monomials ¥(f;) ... ¥(f,) re-
mains invariant under the action of . Then ||t‘1(aF,g‘(\D(f))—\l!(f))—\l!(DEf)H £

[t=1(U, f — f}— D¢ f|} implies

37|, eme (¥ (NE

k

<MV, £ - U £l

j=1

v(iD,f)

and with () the Leibniz rule is easily verified, This proves that §; is a symmetric
+-derivation on 2(H, C), since in addition §.( X™) = §.(X)". O
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5.2. A Fock state over 2A(H, C)

Given an orthogonal projection P in ‘H with CP = (1— P)C, there is an associated
quasifree pure Fock state wp over 2A(H, C) which is uniquely fixed by the requirement
Pf =0 = wp(VY(f)*'¥(f)) = 0 (Araki 1987). Since for a quasifree state all
truncated functionals for n > 2 vanish, expectation values of arbitrary monomials
W(f,)...¥(f,) are expressed as Pfaffians of antisymmetric matrices A,;; = —A;;
which have entries A;; = (Cf;, Pf;) for i < j. Therefore the whole information is
contained in the two-point function

wp(W(f)Y(f2)) ={(Cfr, Pfa). .1

Let P be the projection on the subspace of positive energy of the compact picture
Hamiltonian D,, introduced in section 4, and let wp be the associated Fock state
over A(H,C). Then for f,,f, € Mo,z — fi(2) 1= f;(—ilog z) is analytic in a
neighbourhood of the complex unit circle, and together with proposition 4.7, the two-
point function (5.1) can be rewritten on M, in terms of complex contour integrals

Proposition 5.2, Let f,, f, € H,,, then
dz dz L 7
COALTEAES S S = TN PP ACY

where the z, integration is performed first.
Proof. With (Cf)(c) =e""9 f(c) we have
(Chi, Phy} ={(C(A~ P)f, fa)
ab L (CERSTAICAYACH

Zzl 12
(*) dz, . f dz,
= —= |1
fi:zlﬂ o7 (1\% . mel( 1) fz(zz)
(x4} [ dz dz;

%

2 \ ;
.? - —ﬂ'zl f T (zl) s fa(zq).
lza]=1 EAPIER 2

Here () follows from the fact that, according to proposition 4.7, the integral kernel
of 1 - P in z-coordinates is (e%z, — z,)~!, and (x«) follows from

“mjg dz _f(z) _ f dz f(z)
eNO0 Jip)=1 2T €2 ~ w . l2]>|w] 2712 — W
which holds for any f € H,,, and which can be easily verified by inserting the Laurent
expansion for f in both sides of the foregoing expression. |

The ¢ prescription in the preceding proof, and in the proof of proposition 4.7,
suggests that the integral kernel of the bilinear form f,, fy +— wp(W(f)¥(f,))
is obtained as the boundary value of the function (z, — z,)~7, which is analyuc
in C2\ {(2,,2,) : z; = 2,}. The singularity in (z; — z,)~! is approached from
the interior of the domain {(2,,2;) : |2;] > |z,|} which contains S x S! as a
submanifold on its three-dimensional boundary {(z;, z5) : |2;| = |z,[}.
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5.3. Conformal invariance of the ground state

Now the explicit form of the two-point function can be used to investigate the invari-
ance property of the Fock state wp under the right action 7 +— o (wp) ;= wpoa,
of Diff7(S!) on the states over (M, C). Note that this action leaves the subset of
all Fock states invariant, since they are in one-to-one correspondence with orthogonal
projections P satisfying CP = (1 — P)C, and a}(wp} = wy, py, . In what follows
it will sometimes be convenient to work in complex coordinates. From the discussion
of conformal kinematics in section 2 and from definition 4.1, the SU(1,1) action on
H in z<oordinates is given by

2 . —— 1 -f @z—0

f=U_f with U .f(z)= a—ﬁzf(—3z+a) (5.2)

where by (2.6) = is related to an element A = (% ;) € SU(1,1) by [7](=) =

(az + 3)/(Bz + &). Note that the generator —1 of the discrete Z, subgroup in
the centre of Diff [( S1) corresponds to the transformation f — —f. But since
wp vanishes on odd monomials of the ficld operators, this transformation leaves the
Fock state unchanged, and we may expect an effective action of Diff  (S), instead
of an action of its twofold covering. Moreover on physical grounds SU(1,1)-—
or more precisely SU(1,1)/Z,—invariance of the vacuum must be satisfied in a
second quantized conformal field theory. This is equivalent to the requirement that
the classical conformal group is unitarily implementable in the Fock representation
associated t0 wp. In fact we have

Proposition 53. Let A e SU(1,1), and let [r}(z) = (az + B)/(Bz + &). Then
ar(wp) = wp, Wthh implies invariance of the ground state under the SU(1,1)
action.

Proof. To prove proposition 5.3 it is enough to verify U PU_f = Ff for fin M,
since H,,, is dense in A, But this is equivalent to UZ(1 - P)U_ f =(1 - P)f, and
we have

(U (1= PYU, () = VITT() § ,——%—U F(¢) where |[7](=)| = 1
= VI e VO o 1717(0)
1KI>1 27r1C {T](

J[¢i>1 27i iy LIF AN
(;}f ij'li\/lfl’(u)—l——\/[T]'(Z)f(w)
ltr)(u)l>1 27 [7)(u) = [7](2)

__'fi du 1 Flu)

u| >z |2mu—w

={(1-P f)(z).
We have put u = [r]-!(¢). Moreover d¢ = [r](u)'du together with
(VP (u) ! = /(I71-1)(¢) which follows from d /d¢([r]o[7]7'({}) = 1 justifies
(*). From the definition of {7} from [7)(z)} = (G2 +&)~? and from |a|*— |3} =1
we deduce

/ —-—-——1 T (2 =—1—.
e VI =
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Furthermore [[7]=!(¢)] > 1 leads to |¢| > 1 which is equivalent to |u| > 1 =
{[r](u)| > 1. To see this note that [r](z) = (az+3)/(Bz+@) with |a|*—|8]* = 1.
Then z +— [r](z) can be easily extended by analytic continuation to a bijection of
the Riemann sphere C onto itself which leaves its equator {z € C: |z| =1} = §*
invariant. With the notation C\S* =: H (oo} UH (o} where Hy, and H_, denotes the
hemisphere containing the south pole 0 and the north pole co respcctivel}y we obscrve
that by continuity of z — [7](z) either [7](H ;) = Hygy or [7](H ;) = Hicoy
must be true, since [7] : T\ S! — T\ S? is still a bijection. But z — [r](z) has a pole
for z = —3/@ with |z|> = (1 + |a?)/|e|? > 1 which implies (T1{(H{w}) = Hieo}-
Consequently any point in H.,, is mapped into a point in H,, and therefore
lz| > 1= |u| = |[r](2)] > 1. O

6. Implementation on Fock space

6.1. Implementation of conformal symmelries

To summarize the discussion, we have obtained a triplet {U(X,C), o, Diff(S")},
where « is a strongly continuous representation of Diff7(S!) on the self-dual CAR
algebra in terms of Bogoliubov automorphisms, together with a Fock state wp which
is SU(1,1) invariant, and which gives rise to the GNs triplet (7p, Hp, Q). In order
not to confuse the one-particle Hilbert space H with the representation space Hp
of mp we shall rename the latter by F(PH), which suggests that Hp = F(PH) is
just the Fock space of the positive energy subspace PM. In addition we shall write
¥ o f) instead of mp o W( f).

It is clear that the automorphisms o, ,[7](e!?) = (ce” + 3)/(Be' + &) be-
longing to the previously mentioned SU(1,1) subgroup can be easily implemented
on F(PH) by uniquely determined implementers Q o( U/ ), which are given on the
total set of finite particle vectors by

Qp(U )V p(f)¥p(fa) .. . ¥Vp(fu)p
= Wp(U f))¥p(U. fo) .. . ¥p(U fr)0p. (6.1)

6.2. The general implementation problem

In general wp will not be left invariant by the action of Diﬂ";(Sl) and the ques-
tion of implementability is more delicate. Since our goal is to obtain a unitary ray
representation of the diffeomorphism group on Fock space, one has to show that the
unitaries U, on N satisfy the Hilbert-Schmidt condition, which in fact is a necessary
and sufficient condition for a Bogoliubov automorphism to be implemented. We re-
cail that such an automorphism is said to be unitarily implementable if there exists
an implementer Q p(U') € B(F(PH)) such that for any A € A(H,I') the relation

Qp(U)rp(AYQp(U) = mpoay(A) 6.2)

is valid. o treat the general case where a}(wp) # wp we have to introduce the
Current group Currp(H,C) (Araki 1987, 1988), which is defined by

Currp(H,C):={Q € B(F(PH)): Q" = Q" and
QUL (f)Q" =V p(Uqyf) for a Uy € Bog(H,C)}. (6.3)
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By irreducibility of =p the kernel of the map U +— U, is isomorphic to the

group U(1) and its range is the subgroup in Bog(X,T') which will be denoted by
Op(H,C). Then by definition of Currp(H,C) and O p(H,C)

U(1} — Currp(H,C) — Op(H,C) (6.4)

is exact. Elements in Op(H, C) are completely characterized by the Hilbert~Schmidt
condition (Araki 1987), which states that if U/ € Bog(H,C), then U € Op(H,C) if
and only if ||PU(1 — P)||ys < oo and }|(1 —~ P)U P||;5 < oo. Note that CPU(1 ~
PYC = (1 - P)UP implies automatically ||[PU(1 - P)|lgs = |[(1— P)U P||ys,
such that it is sufficient to prove one of the two conditions. Moreover by (6.3) we
learn that o, has an implementer if and only if U € O p(M, C). Therefore our next
step is to show U, € Op(H,C). We do this by a slight modification of a similar
proof given in Segal (1981). First we need the following lemma.

Lemma 61. Let 7 € ﬁﬁﬂ_(sl) and let n > 1,m > 0. Then for each k € N there
exists a C(k) € R+ such that |{e_,,, U, e,,}| € C(k)/(m + n)*.

Proof. Put 7=1 =: &, then

[+" do
Jow 2m
where h{o) =: es(0)-0)/2 [yi(a). For t € {0,1],k,(c) := te(o)+ (1 — t)o is
again in Diff ((S') due to k,(0+27) = x,(o)+ 27 and &} > 0. If t = m/(m+n)

we have &, /i iay = (Rt m)(m/(m+n)e(e)+(1-m/(m+n})o) = me(a)+
no. But tlen

e V=

{a Alno+me(a)) g -y
AC—mrVrtm/ © e v j

T de
{e_n,Ugep,} =f ——e'(m+“)’°mf(m+n)(0')h(o.)
—x 27

+7 d )
{p Hm-+n
= ] Te{ + )tp'rm/(m+n)(‘9)

-7
17 dp f i\ /s gk m e )
= [2 () (Fem) et

-7

. k +* k
i de i(mtn)p 2
(m+n) /; I " nwa(pkrm/(m+n)((p)‘

w

Here v = 7,y yny(o) and r(p) =t ho k7 (@) /K, o k7 (). By construction of
r,, the function (¢,¢) — (8% /8¢x*)r, () is continuous in both ¢ and » and we
obtain

e, Usen)l € C(K)/(m + n)*

where

k

C(k) =:sup { ;j—wkrt{{p)‘ (te[0,1],p € [—'n’,'rr]} <

by the boundedness of continuous functions on compact sets. |
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Proposition 6.2. Let 7 € Diff ,($'). Then U, € O p(H,C).

Froof. The assertion follows since the Hilbert-Schmidt condition is satisfied.

”f)l:jr(11 - P)”%S = z Z(e—n? Urem>(em?Ure—n)

[
™8

ad 2
Z S by the preceding lemma
m=0 ‘"

=C?Y. oy <0 fork>1. D

6.3. The expiicit form of the implementers
With respect to the polarization PH & (1 — P)H we rewrite U, as a operator-valued

matrix
_ [(a(r) b(7)

Ur= (E(-r) a(r) ©)
where a(r) := PU,P,b(7) := PU_(1 -~ P),a&(r) := Ca(7)C and b(1) :=
Cb(r)C. By proposition 63 b(7) : (1 — PYX — PH is Hilbert-Schmidt, and
a{7) is Fredholm with vanishing index, since due to the antilinear involution
Cdimkera(r) = dimcokera(r). If U/_ is close enough to the identity, then
(|P—-UrPU.|| < 1, and no level crossing occurs, since PHN (1~ Uy PU_YH =
ker a{r) = {0}. In this case Qp{U,) can be casily defined as in (6.1) by its action
on the total set of finite particle vectors

Qe(U )V p(f1) ... Vp(f.)0p
ol

~ det(1 + A*(U,)A(U,))/

o 3 Y omarem {_1_,." Al \n‘“\ A A
R¥PIYrdy) e - ¥ pAtrin s EXP | EPALYICP | Sip- (0.6)
Here A(U_) := (1 - P)U_(PU,P)~' = b(r)a(r)"". Note that u(r)~! exists as a
bounded inverse, since a{ ) is Fredholm. Existence of det(1+ A*(U}A(U)) follows
from Tr{ A*(U,)A(U,)} < cc. In (6.6} we have introduced creation and annihilation
operators ¢}, ¢cp which are defined by cp(h) := ¥ p(Ch) and cp(h) := ¥p(h) for
h € PH. With this convention the quadratic form in the exponent is understood as

AU Yep = Y2 =1 Cple mHCe_. A(U, Ye_,)cp(e_,). The general case
0 ;é dim ker a{7) < oo can be traced back to the former. Pick an orthonormal base
{g1+-..,9,} in ker a{7). Then the operator [T;_,(¥ »(g;)+¥ p(Cyg;)) implements
a self-adjoint unitary V, € Op(H,C), such that (—)"V, interchanges kera(7) =
Span{g,,...,g,} with ker@(r) = Span{Cg,,...,Cg,} without any other change
(Araki 1987, Ruijsenaars 1978). But then U] := (—)"U V. € Op(H,C) and
ker(=)*PU, V,P = {0}. Let N =: 3.  cp(e_;)cp(e_;) be the fermion number
operator. Then exp{iwnN) implements the Bogoliubov automorphism f +— (-}" f
and, as a consequence, the unitary QP(U')exp(nrnN) ['[J 1(¥p(g;)+¥p (Cg;))
is an implementer for U, where Qp(U7) is. given by (6.6).
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6.4. A central extension of Diff;(5')

We recall that = is the generator of the centre in ﬁf+(51). Then Uz f = — f and
exp(imN)WU p( f)exp(—iw N} = ¥ p(U=f), which shows that U is implemented by
exp(in N) multiplied by a phase factor. But exp{inN) = Hev—Hodd commutes with
all implementers, such that Q(U.) can be restricted to ¥, (PX) = II,,F(PH)
and 10 F, 4 4(PH) := N g4 F(PH) respectively. Here 1T, and Il 4y are the orthog-
onal projections on the even, respectively odd, particle number subspaces in F( PH).
With the benefit of hindsight we define the Currp(¥, C) subgroup (Diff7(S?)) ..
by

(DIff7(S")) ey, = {Q € B(F(PH)): Q* = Q! and 3r € Diff ,(5') such that
QYp(Q =Vp(U,fIVf eH}. ©.7)

Since the tange of U is isomorphic to Diff , ($')/ ker U ~ Diff(S!), we shall tac-
itly identify elements in Diff +(S 1Y with umtanes U/,. Then the exact sequence (6.3)
implies that (D1ﬂ'+(S }ext IS @ central extension of Dlﬂ'+(81) by U(1). Moreaver
let (Diff  (5")),, be the subgroup in B(F,, (PH)) which is obtained as the im-
age of the homomorphism Qp(U.) — II,,Qp(U,), then the previously mentioned
homomorphism has kernel {1,exp(inN)} ~ Z,, and it follows that (Diff _(S1)),,,
is a central extension of the diffeomorphism group of the circle by U(1), and the
following diagram commutes.

z, — Z,

ext

1 |
U(1) — (Diffi3(S1)).,,, — Diff3(s!) (6.8)
l

I
U{1) — (Diff .(S'))

ext

l
— Diff . (SY).

6.5. A two-cocycle on Diff {S")

Let 4 C Diff7(S') be a neighbourhood of the identity, consisting of all U, with
kera(7) = 0. Then an algebraic cross section & — (Diff7(S!)),,., U, — Qp(U,)

can be defined where Q (U, ) is given by (6.6) and where in addition the phase e/
in (6.6) has been put equal to one. This choice of phase then implies the following
lemma.

Lemma 6.3. For all U_ €U let Qp(U.) be defined as in (6.6) with ¥ = 1. Then

G U U, =12 QpU, )0, )=Qp(1)=1
(ii) U, U, =-1=2 QpU,)0Bp(U,,) = §p(-1) = exp(in N}.

Proof.  Since QP(U ) and QP(U }* implement the same algebra automorphism,
we must have QP(U } = e'*"QP(U )*. But by (6.6) both (QP,QP(U PQp) =

(QP(U )2p,Qp) and (QP,QP(U Y p) are real positive numbers ¥ 0, which
implies e'¥ = 1. This proves (i). (ii) is obvious from (6.6). m]



Conformal field theory of the 2D Ising model 2509

The previously defined local cross section can always be extended to all of
Diff {(S') such that properties (i) and (ii) in lemma 6.3 are satisfied globally. De-

noting the extension of this local cross section with the same symbol U, — @ p(U;)

we then obtain a global two-cocycle (U, , U, ) — MU, ,U, ) on Diff;(S!) from
this extension, and
Qp(U.)Qp(U,,) = X(U,,, U,,)c’ép(vn U,,)- (4.12)

Moreover by property (i) we have A(U, Uz, U, ) = MU, ,UzU, ) = XU, ,U,),
which implies that A factorizes to a two-cocycle on Diff +(Sl) The latter can be
rewritten as exp(lw([‘rll {ra])) = A(U_,U,_ ), and in a neighbourhood of the
identity in Diff _(S"), it is straightforward to compute this cocycle explicitly.

Proposition 6.4. Let V be the neighbourhood of 1 in Diff +(.S‘1) which is closed

Aar maaltinlicntinme nmd fre wdiale Tl = Y4 fiaiaalin, LY

uhaer munupubauuu dilu JUT WILILIL | T V llllpllt:b U cu. lnEl_'l
det(a(r)"a(r 0 1p)a(ry)"1)/"
det(a(ry )~ ta((1) 0 )~ Y)a(r1)-1)1/4

for all [r],{r,] € V. Here the branch of z — z!/* is chosen such that z — 1 =
z!/%~ 1, and all determinants are taken in PH.

exp(iw([r},[m])) =

Proof. [r;] € V for ¢ € {1,2} implies kera(r) = kera(r~!) = {0} for each
T € {71}, Ty, T © T}. Therefore the implementers Q p(U.) are given by (6.6) with
the additional convention e’ = 1. Taking vacuum expectation values of both sides of
the identity QP(UTI)QP(UTQ) = exp(iw([r],[75])) @ p U4, o7, ) We obtain by using
QP(UH) = QP(UTI) the expression

exp(iw([7],[]))
det(1+ A" (U, ,..) AU, ., )"
det(]l + AU, )A(U,, N/ 4det(1 + A*(U, ),«ﬁlL(Urz))I/‘1

x {exp (3¢p A(U )ep) Qp,exp (3cp AU, )ep) Qp).

Since the ratio of the determinants is real, the first factor on the right-hand side does
not contribute to the phase, and therefore it is sufficient to restrict attention to the
contribution of the inner product only. Moreover A(U_) = (1 — PYU_(PU,_P)-!
implies 1 4+ A*(U;)A(U,,) = (PU, P)"'U, . (PU_P)' = a(r)ta(r, o
7o)a(r,)"t := X. Then, using the CAR relations it is straightforward but tedious to
compute

n(1 rrr VA2V 0

N Jp )Y
et{1+ A(U7
= det(a(r;} 'a(7, 0 m)a(ry) ") /2
Here the branch of the square root is taken where z!/2 — 1 if z — 1. Since
det X* = detX also holds in the infinite-dimensional case, the assertion fol-
lows from the observation z/z = e?2%(*) and from X* = a(7;")"la((r o
7,)"Da(r71)~'. Then the cocyle is equal to (det X/det X*)!/%, and the pre-

viously mentioned choice of the square root then implies that z'/4 — 1 if z — 1,
O



2510 W Maderner

6.6. The C* algebra of chiral observables

From the preceding discussion we learn, that the map (7] — f‘([r]), where f‘([-r]) =
1,,Q,(U,), is a projective representation of Diff +{S') into the unitary operators in
B(F.,( PH)). Moreover the smallest C* algebra in B(F,,( PH)), which is generated
by the range of the map introduced earlier, is identified with the abstract C* algebra
O of chiral observables. Hence O is the group algebra of the central extension
(Diff +[D ) )ext of the diffeomorphism group of the circle. It is interesting to see
that O can, in principle, be obtained from an abstract construction which parallels
the well known construction of the Weyl algebra in quantum mechanics.

Theorem 65. Let Oy, be the free complex vector space over the set of symbols
{W([r]) : [7] € Diff L(S")}. Then Oy, is given a +-algebra structure by

W([rDW([r]) = exp(iw([r], [r])W([r, 0 7]
w(lr)* = w([r]™h.

The linear functional w, defined by

(det(a(r)a(r)4 i kera(r) = {0)
wy(W([7])):=
o)) = { i kera(r) £ {0)
is a state over Oy, and if (wy, H,,8) denotes the associated GNS triplet, then

there exists a unitary S : X, — F.,(PH) such that

Proof. Positivity of the linear functional w, follows from the fact that
w([r}]) — F [r]) is a s-isomorphism, [([r]) — (Qp.['([7])2p) is positive, and
wO(W([T])) (QP,F([T])QP) Here () holds, since

1 -

det(1 + A*(UYA(U,))"Y4 = det( PU, PU? P)/*% = det(a(r)a(r=1))}/?

and since (Qp,[([7])S2p) = 0 iff ker a(7) # {0}. Hence w, is a state over O,
Since Qp is cyclic for O, a unitary operator S : H, — F_ (PH) is given by

Smo(W(r1))2, := f([r])QP. Then * implies unitarity and, by definition of .S, we

have S#,(W([r]))S" = T'([+]). 0

7. Algebra of charges and Schwinger term

7.1. Implementation of one-parameter groups

In the preceding section we have only dealt with the implementation of fixed
elements U, € Diff$(S?), which led to the construction of the central exten-
sion (Diff7(S%)),,, as a group of unitaries in B(F(PH)). Now we pose the
question as to the conditions under which the strongly continuous one-parameter
group {e'P¢* : t ¢ R} can be lifted to a strongly continuous one-parameter group



Conformal field theory of the 2D Ising model 2511

{i9Qp(P0) ;¢ ¢ R} in (Diff7(5')),y., such that dQp(D;) is self-adjoint on a do-
main containing the Fock vacuum, and (Qp,dQp(D¢)) = 0. It turns out, that the
only condition which has to be satisfied for an affirmative answer is continuity of
{e'Pe! : t € R} in the P-strong topology on Op(H,C) (Araki 1987). Here the P-
strong topology on O p(H, C) is generated by the family of seminorms {p, : f € H}
where p,(A) := [[Af]| + ||[PA(1 — P)}{ys, and it is easy to see that this topol-
ogy is strictly finer than the strong operator topology. Moreover for the previously
mentioned one-parameter group it is sufficient to prove [[PD (1 - Plfjps < oo,
since this automatically entails P-strong continuity (Araki 1987). Note that due to
PD;+ D¢P =0 we have |PD;(1 - P)|lgs = [|(1 = P) D; Pllys. For a detailed
treatment see Araki (1988) and Lundberg (1976).

Proposition 7.1. T each £ in Vect(S'), the one-parameter group {e!C¢ : t € R} is
continuous in the P-strong topology.

Proof. Let f(n) denote the nth Fourier mode of the C*° vector field . Then

o _ofaed i, 1.\ e
(ems Deenn) = [ 57 (‘EE t3¢ - 55) e
1 [ do —if{n+mls
=—2—(n—m—1)j ﬂe { )E(O')
-

= 3(n —m~ 1) + m).

Moreover

]
1M
e i

M | -

|£De (1~ P)llus {em» Die_n)e_n) Dgeyn)

(n—m~1)%E(m + n)f*

I
™8

3
1
-

~

(m + n)E(m + n)|® =: (%),

[-]e
(e

a3
H
-
3
f
(=]

Now

=4}

(%) = > wE(w)P?

u=1

< Y uwlEu))?

w€L

= > (—u?E(u))(—ué(u))
u€l

- <Elf,€hf)'

But {¢”,£") £ oo, since any derivative of a C™ function is square integrable, and

with v = n 4 m we have 3 yyn=u 1 = u. O
nzlm20



2512 W Maderner

7.2. The Lie algebra of charges as a central extension of Veci(5*)

Because (Diff{(S")),,, is a central extension of Diff7 (') by U(1), its Lie algebra
Lie(Diff 7 (S')),,, must be isomorphic to a central extension Vect(S') & R of the
Lie algebra of Vect(S?) by R. Here Lie(Diff7(S')),,, is obtained as the algebra
of unbounded self-adjoint generators of strongly continuous one-parameter groups
in (Diff5(5)) ey We shall refer to (Diff7(S")),,, as the Lie algebra of charges,
which can be justified from (7.4). In fact, proposition 7.1 establishes the existence
of such a dQp (D) € Lie(Diff7(S')),,, for each generator Dy, but in general the
fact that U_— Qp(U,) is a projective representation of Diff{(S') on F(PH) is
reflected on the infinitesimal level by uniqueness of dQp(D,) up to an additional
constant. The situation is then summarized in

R — Lie(Diff7(5)).,. — Vect(S?). (7.1)

ext

7.3. Normal ordering and Schwinger term

In the previous discussion this constant has been fixed by (Qp,dQp(D;)Rp) = 0,
which comes from the normal ordering procedure of fermiomic currents, moti-
vated from the requirement of positivity of the spectrum of the second quantized
compact picture Hamiltonian D,. But then § — dQp(D,) is a cross section
from Vect(S!) into its central extension, and the Schwinger term S(&,7)1 :=
i[dQp(D¢),dQp(D,)] — dQp( D¢ 1) measures the deviation of this cross section
from being a Lie algebra homomorphism,

In Araki (1987) it has been proved that, given I, = H;,CH, 4+ H,C = 0 with
the property ||PH,(1 - P)llys € oo, € {1,2}, and H; not neccessarily bounded,
the generators dQ p( H;) obey the relations

. . i
i[dQp(H,).dQp(H,y)] =dQp(i[H,, H,]) + 2 Te(Fp[Fp, H)|[Fp. Hy]).  (7.2)
Here I, := 2P — 1 is a self-adjoint idempotent unitary which is diagonal on the

polarization PH & (1 — P)H. Moreover for H;, the generator can be written as the
formal expression

dQp(H) =13 D (eq Hien) : Wple,)¥ple,) (7.3)

where the right-hand side converges when applied to the vacuum. Then with (7.2) it
is casy to compute explicitly the Schwinger term S(-, -},

Proposition 7.2. Let £,n € Vect(S!), then

1 [t de

S(Em =57 | GoE"+E)om(a).

Proof. With Fp = 2P -1, P =5"% e_.{e_., -}, we find Tr(Fp[Fp, D]{Fp,
DW]) = Zm?o Z:n)ﬂ(em! DfewnMem’ Dﬂe—n)' Then’ usmg <€m, Dfe‘“> = %(n_
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m— 1)§(n + m), we have
Tr( Fp[Fp, Df][FP's D:,])

= Y S (n-m-1)}(E(m+ n)i(m + n) - &(m + n)i(m + n))

mzinzl
— u’ -
- L 3

€

2 E(w)A(—u).

a
[

Here the reality of £ implies g(n) = £(-n) for its Fourier modes. Morcover we

have put 4 + m=u,u EN men Zm>02n>1 - Zu)l z:n 1 and Zm+n"u(u
2n + 1) = (u® — %) /3. Since

it d i
%f ﬁ(f"#e‘)(a)n(ahg / . Z(—m +iw)e ™ E(w)) (3 A a)e"")

—r e
= E ~&(u)7(q) / soelnto
= Z ZE(u)H(—u)

the assertion follows from S(§, %) = (i/8) Tr(Fp[Fp, D¢|[Fp, D,]). O

7.4. A closer look on the charges

With the two-cocycle S( -, +), the Lie bracket in Vect(S') @ R can be written as
(&, @), (n,8)]) = ([€,n],S(&, n)), where n, & € Vect(S') and «, 3 € R. Then the
previously mentioned algebraic cross section coincides with the continuous injection
£ +— (£,0). Since Vect(S!) is equipped with the Fréchet topology inherited from
the underlying space of C*™ functions, we may ask in what sense dQ p(D;) depends
on £ Since D, is unbounded it will be more appropriate to consider the R-lincar
map § ~ dQPng)z,a, where @ € dom Dy,

Proposition 7.3. Let @ = Wp(f) .. . Wp(fo)Qp, f; € Hypoorn fOr all 1 €7 € n.
Then the R-linear map £ dQP(D_ )cp is CONtinuOUS.

Proof. By R-linearity of £ — dQp( D)y it is sufficient to prove ||dQp( D, )i —
0 for any sequence of vector fields (&,) converging to 0. Since
[dQp( D¢, ), ¥ p(fN = ¥p( Dy, [), we have

CO

1dQp( D¢, )¢l < LMIIJ 71 De, J;11 + MIIdQp( D¢ )il

i=1

where M = []7_ || /;il, and where we have used {|¥ p(f)|] € {| f]). From the proof
of proposition 4% it Tollows that £, — 0 implics j|D,_f;|| — 0. Moreover the last
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term on the right-hand side is estimated with the help of (7.3), and

1dQp(D¢, Yell> = S PD (1~ P)llys

3l
2
(", ¢ by proposition 7.1

+
5 [ eI =< Sl

F/a

il

Thus the last term also vanishes, since §, — 0 then implies [|£Y]|., — O. a

For simplicity of notation let dQp( D) =: @(¢). Then proposition 7.3 implies
that ©( - )y is a continuous real linear functional on Vect(S!) which has a unique
complex linear extension to Vect( S')p := Vect(S!) @ C. By taking inner products,
this functional is then pulled back to a distribution (@,,,,[-) := {¢',0(:)%) on
Vect(S?)e, and we shall denote with 7 the subset of all distributions in Vect(S');
of the form (©,,]-). If £ € Vect(S')§, then (©,,l€) can be formally writ-
ten as an integral with kernel ©, (o), and it might be useful to have an ex-
plicit expression for the integral kernel. Let Wp(o) =3 5 Vp(e,)e ™7, then
Yp(f)= [TT(do/2n)} V¥ p(c)f(o). By (7.3) we find

(© e lE) = %Z:n(w Vp(ea)len: DgendVplen)" : )
=1 [T (o) (i) + 1801 36(0) ) Wato) o)
=§/+ iigam( fa wp(a)aéwp(a)=w>
= %/:r g—if(a)@w,w(o‘). (7.4)
Here

i d
O, (0):= <cp",—;— : ‘IJP(U)E\I’P(O') : cp>

is the formal expression for the integral kernel. It is clear that this kerne] is the
matrix clement of the normal ordered second quantized on-shell expression of the

classical energy-momentum tensor density @,, = (i/2)¥;d,.1%,, and O(£) is the
normal ordered integral over the Nocther current ©, (o )¢%(c). Therefore we
shall refer to the self-adjoint generator ©(£) as the light cone components of the
cnergy-momentum tensor smeared with the vector field £, which obeys the relations

0. 0(m1= olle ) - 5 ([ Tt €0 ) 1. @.5)
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8. The anomalous transformation law

8.1. The adjoint action of Diff ,(S') on Vect(S') @ R

The occurrence of a Schwinger term on the right-hand side of (7.5) gives rise to the
anomalous transformation law of the energy-momentum tensor in two-dimensional
conformal quantum field theory. Here this transformation law is determined by the

adjoint action (Qp(U,),0(£)) = Qp(U,.)O{(£)Qp(U,)* of (Diff{(5"))ex, ON
its Lie algebra Lie(Diff7(S")),,,. Since the centre of (Diff(5%)),,, acts trivially
on the latter, and Lie(Diff}(S')),,, is isomorphic to Vect(S!) @ R, this action
factorizes to the adjoint action of Diff , (S!) on Vect(Sl) ® R, which we denote by

Ad. For one-parameter subgroups {FI¢,] in Diff _(S'), Alele  is obtained by direct
computation.

Lemma 81. Let £,n ¢ Vect(S'),x € R. Then (1, «) € Vect(S!) & R and

. !
Adge (. a) = (Ad[Flﬂl(n)’_/U ds S(&, Adpye 1(n)) + o).

Proof. The adjoint action of Vect(S') on its central extension is determined by
the Schwinger term, and we have ad.(n,a) = (ad¢(n), 5(£,n)). Then with the

— - - ~—~{0
convention ad(n) i= ado---0ad {n-times) and adi.n)(n) = n,ad(E J(1;;, a):i= (n,a),
it follows by induction that ady (n) = (ad{™ (1), S(€,ad{" (). Inserting this
identity in the expression for Ad we obtain

— £ —~(n}
Ad[me‘](ﬂ, Z““adg (n,e)

( _ad"”(n) }: mS(E,ad("'l)(n)) + a)

n=l

(Ad[ﬂ* (1) j ds S(¢ Z ad(k)(n)-l-a)

= (Adge (), [ ds 56 Adge ) +a) . O

Now fo’ ds S(¢&, Ad[ﬁ;'](n)) can be rewritten in terms of a third-order non-linear

differential operator A liiTﬁ(S‘) — C*(S',R) which is closely related to the
Schwarzian derivative and whose kernel completely characterizes the universal cov-
ering of the SU(1,1)/Z, subgroup in Diff  (S'} (Segal 1987). Let r € Diff _(S?)
then A : ISqi_{"f*h(Sl) — C®°( S R) is defined by
ey 3/ 2 1
A(T) = ?—E(F) +§((T’)2—1). (8,1)

Note that by definition of A we have A(7 01} = (75)*A(7) o 73+ A(r,) for any

T\ Ty € ]’j_rf'[‘_i_(sl), Moreover if [r] € SU(1,1)}/Z, we observe A(7) = 0, and with
(8.1} we are prepared to prove the following lemma,
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Lemma 8.2. Let £, € Vect(S!). Then

j ds S(&, Adge, () =—~2—1Zf d"A(Flf )(e)n(o).

Proof. We recall that if = € Diff ((S!) and n € Vect(S?) then Adpy(n) = [7].(n)
where (7], is the push forward map for vector fields: ([7],( n))(a)(d/da) =r'o
Y o)ne v Y{o)(d/de). For simplicity of notation we put Fi* =: .. Then

1
A ds S(Ea Ad{plﬁ'](n))

Y /+” do’j dstloT_ .,(O')Tlof_s(o‘){d 33 %}5(0)-

With the substitution r_,(o) = ¥ we obtain

d d
dd = ‘r;(a)da,-a; =7l,0 Ts(ﬂ)ﬁ =:D,
where D, is a differential operator in ¢. By definition we have r, = F1¢, such that
EorT,{J)=7,(J) and the right-hand side in this display reads
1 U gy !
7 —n(1) / ds (+/(9))*(D, oD, o D, 7, + D, 7, ) (V).
0

roo{=7) 27

Using the chain rule, P, oD, o D, 7, and D, 7, can be casily computed. In terms of
the derivatives of 7, and r_, the s-integrand reads

(r))* (D, oD, 0D, 7, +D,7,)

= (" o) )Y + 7" o 1'_,1r:,,'('."')2 +r,0 T_,T’ 7,

+27" o, 7, + (1T, Yo ‘J'f,‘re,'rs

_ T;SH‘I Tlff + 37—3 Te (T )H B T T
o T TP ()
Here we have replaced the derivatives 7., o 7,,7”, o7, and 7/ o 7, by
/7, —7/(r2)? and (3(7)2 — (r7)7}}/(+!)®. This follows by differentiating the
identity 7_, o 7,(¢) = o with respect t0 o. Finally (%) can be rewritten as a total
derivative with respect to s:

+ 1"31"3 =:(=%).

1
| ds Ste At ()

+m
-5/ ""[(*) (oo

24
1 {*Tdo [! d |7 3/ L 12
= - — — — | e o[ — P |
24 f_, 2,1-'/0 ds ds [‘r; 9 (T;) +2(('r_,) )| (o)n(o)
1 [fdo v 3 /7N 1 2
Ty :’}(rg —5(1_—;) +5((r)" = 1) | (o)nla)
T
= - = [ SZamt)ome). .

24

-
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By lemmas 8.1 and 8.2, the adjoint action of Diff _(S?) on Vect(S')&R is given
by

" de

Adpy(ny0) = (7] 0= o o A(r)(a)n(a))

24/,
and, taking the discussion preceding lemma 8.1 into account, the anomalous transfor-

mation law of the smeared energy-momentum tensor components under the adjoint
action of (Diff}(S')),,, reads

7 do

QrTIOM@W,) = ollrln) - o ([ SZAENOm) 1. 62

We recall that this action factorizes to an action of Diff _(S') on Lie(Diff7(57)) .-

8.2. Connections to geometry

On the level of classical field theory, it is known that the light cone components
©,,[+.] of the energy-momentum tensor of the theory can be considered from
a more geometrical point of view as elements in an affine hyperplane in the space
of extended quadratic differentials on the circle (Segal 1981). Then these compo-
nents transform according to the restriction of the inverse of the coadjoint action of
Diff , (S') on this hyperplane. In the following we shall show that these structures
arise in a natural way within our algebraic treatment. T do so we must introduce
some notation.

Let 7,(.S') be the bundle of contravariant tensors of rank 2 over S! and let Q be
the vector space of smooth sections S — 7.2(S!). We shall refer to Q as the space of
quadratic differentials. Since do®do is a global frame in T2(S!), Q can be identified
with C*°( S, R). Moreover any £ € Vect(S5') induces via insertion a complex linear
map ¢ : @ — Q'(S'), where ¢ is given by (¢¢ 0 X)(o)de := £(0)X(0)do,
X € @ and Q'(S") is the space of 1-forms over S'. Integration of ¢¢ o X over §?
yields a real number, which defines a bilinear map (+|-): @ x Vect(S!) — R

(X, — (Xl =: [ 1eox. 83)

This map extends canonically to a bilinear map Q x Vect(S!')y — C, which is
complex linear in the second entry by (X | +1in) := (X|£)+i(X|n), where £, n are
real. Since by definition (X|-) is a bounded linear functional on Vect{S!)., such a
quadratic differential determines uniquely a distribution in Vect{S')%. Hence there
exists a linear injection 7 : @ — Vect(S!)g, 7(X) := (X|-), which to identify via
(8.3) the elements X € Q to be identified with distributions j(X).

The connecticn of our algebraic treatment with the geometic formulation is estab-
lished by restricting attention to a special subset 72 . of distributions in 7, which
are real-valued when evaluated on real vector ficlds, and which correspond uniquely
to C functions on S'. To be more precise let 72, be the subset of distributions

m

(@4l +) in T for which ' = ¢, ||¢|| = 1, and which have smooth kernel

i; <‘P, : ‘I’p(d)ac-lg\llp(a) : cp> .

-~
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Then T} .. # 8 since for o = ¥p(e, )...¥p(e,, )p,n ;21,1 <5<k,
the kernel ©, (o) is a real-valued trigonometric polynomial and hence analytic.
Moreover we observe that, by definition 72 __ . C 5(Q) and by injectivity of j, these
(®4,|+) uniquely correspond to quadratic differentials on S' which we shall denote
by ©,,. O, like these are then given by

1 d
o <(,p,. ‘I’P(U)E‘I’P(d) : Lp> de @ de.

The (Diff}(S')).,. action (8.2) on Lie(Diff}(5")),y, which factorizes to the
adjoint action of Diff [(S') on Vect(SY) @ R automatlcally induces a right action
R : T x Diff [(§') — 7 on the family of distributions 7, which is obtained by
inserting (8.2) into {¢', - ). In fact for any [7] in Diff  (S') we have

R[T] ((ewwl ’ )) = (GQP(Uf}‘wQP(Hf)aal -) (8.4)
and R(. 0 R,y = Ry, oy, IS easily verified. Moreover R leaves 7.7 ., invariant,
since a (©,,,|+) in T} ooun has {l¢|| = 1 with a smooth kernel © (). But from the
jefi-hand side of (8.2) we conciude that {8y, y o p(u. )+l ) as a smooth kernei

()0, 07(0 =A(7)(o) which together with ||Q (U, )*¢|| = 1 implies R
invariance of ’Tsmomh ThlS right action has an illuminating geometrical interpretation.

Proposition 83. Let [r] € Diff [ (§'), let X € Q, and let R,;: Q@ — Q be the affine
map X — R, X = [r]"X — 5 A(7), where [7]" is the pull back of contravari-
ant tensors under the diffeomorphism [r] and where A(r) denotes the quadratic

differential 17 A(7)do ® do in Q which is associated with each 7 € D1H+(Sl)
Then

R:Q x Diff ((§') — Q

is an affine right action of lef+(S‘) on Q. Moreover let Q denote the pre-image
of 7B . under the injection j : @ — Vect(S!)g, then the following diagram
commutes:

~ le] ~
Q - Q
il Li
R
Ir] )3
‘Tsmooth nmooth -

Proof. By (7.8) we have for r,,7, € Diff ,(S!) the identity A(r o 7,) =
(74)2A(7)) o 75 + A(1y), which together with [ry o 7]* = [7,]" o [,]* implies
Ri; ors] = Rryy© Ry, Thus R is an affine nght actlon Moreover let ©,, € 3,
then R,©,, can be written as 37((7')°0,, =A(7))(0)do @ do by defi-
nition of ['r]" and the expression inside the bracket is exactly the integral kernel of

(@gu, ) vQr(u,) =
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For the sake of completeness it should be mentioned that—following Segal
(1981)—the affine right action of Diff  (S') on Q is obtained as follows. Let Q&R
be the real vector space of extended quadratic differentials containing the hyperplane
Q®1:= {{X,1): X € @} as a closed subspace. Then Q is canonically identified by
X — (X, 1) with QR. Moreover each ( X, a) acts on Vect{S') &R as a bounded
real linear functional ((X, a)|- ), where ({ X, a)|(&, 3)) := (X[€)+aB forall (¢, 3)
in Vect(8")®R. Hence Q&R lies in the dual of Vect(S')@R, and the adjoint action

Ad of Diff +(S') on Vect{ S')@R induces by transposition a right action Ad' on the
dual, which is exactly the inverse of the coadjoint action. From the definition of Ad
it follows that (Ad[f]‘L)ﬂ D€, 8) = (X, 1)|Ad}, (£, 8)) = (B X, 1)I(€,8)),
which then shows that Ad,*(X,1) = (R, X, 1).

Notwe added in proof. 1 owe special thanks to Professor B Schroer for raising my attention to earlier
work on the construction of the order-disorder variables with operator methods (Schroer and Thuong
1978). The global operator expansions in conformally invariant QFT as treated in Schroer er of (1978),
and the conformal blocks were not an invention of the 1980s. Their existence and decomposition theory
has been well known since 1974/75 (resolving the causality paradox in two-dimensional conformal QFT by
operator methods). However no non-trivial model (non-Abelian statistics) was known until the Coulomb
representations of Kadanoff, Nienkius, De Nies and BPZ. It would be interesting to recover in the previous
approach the explicit n-point functions of the chiral d = 1/16 components which have been explicitly
computed in Rehren and Schroer (1988) by holomorphic factorization of the doubled model. Moreover
I am indebted 10 Professor H Grosse and to Professor K Fredenhagen for encouragement and help.
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